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This document supplements our paper 3D Local Fea-
tures for Direct Pairwise Registration. It provides further
quantitative ablation studies as well as qualitative results.

1. Ablation Study

Does multi-task training scheme help to boost the fea-
ture quality? In order to find out how multi-task training
affects the quality of the learned intermediate features, we
trained several networks with combinations of different su-
pervision signals. For the sake of controlled experimenta-
tion, all networks are made to have the identical architec-
ture. They are trained with the same data for 10 epochs.
Hence, the only variable remains to be the objective func-
tion used for each group.

In total, there are four networks to be compared. The
first one is trained with all the available supervision sig-
nals, i.e. reconstruction loss, feature consistency loss and
pose prediction loss. Regarding the other three groups, each
of the networks is trained with one of the three signals ex-
cluded. For simplicity, those groups are tagged as All, No
Reconstruction, No Consistency and No Pose respectively.
The fragment matching results using features from different
networks are shown in Fig. 1.

As shown in Fig. 1, with all the training signals on, the
learned features are the most robust and outperform all the
others which lack at least one piece of information and thus
suffer a performance drop. When no reconstruction loss is
applied, the learned features almost always fail at match-
ing. It is therefore the most critical loss to minimize. The
absence of pose prediction loss has the least negative influ-
ence. Yet, it is necessary for RelativeNet to learn to predict
the relative pose for given patch pairs. Without this the later
stages of the pipeline such as hypotheses generation and
verification cannot continue. These results validate that our
multi-task training scheme takes full advantage of all the
available information to drive the performance of learned
local features to a higher level.

Invariant vs. -variant features in matching Our method
extracts two kinds of local features using two different net-
work components. The ones extracted by PPF-FoldNet are
fully rotation-invariant, while local features of PC-FoldNet
change as the pose of local patches vary. Experimenta-
tion contained in the paper used local features from PPF-
FoldNet only to establish correspondences thanks to its su-
perior property of invariance. Here, we use invariant and
equivariant features to match fragment pairs separately, and
compare their matching performance. This is important in
validating our choice that invariant features are more suit-
able for nearest neighbor queries.

Fig. 2 exhibits the distribution of correspondence inlier
ratio for the matched fragment pairs by using different lo-
cal features. Matching results of equivariant features shows
a huge amount of fragment pairs having correspondences
with only a small fraction of inliers (less than 5%). Invari-
ant features though, manage to provide many fragment pairs
with a set of correspondences with over 10% true matches.
It proves that invariant features are better at finding good
correspondence set for further registration stage. All in
all, rotation-invariant features extracted by PPF-FoldNet is
more suitable for finding putative local matches. Note that
this was also verified by [3].

Table 1. Average # of correspondences obtained by different meth-
ods of assignments. K = k refers to retaining k-mutual neighbors.

K = 1 K = 2 K = 3 K = 4 Closest

# Matches 335 1099 1834 2609 3664

More details for correspondence estimation methods
In the main paper, we found out that a more relaxed condi-
tion for keeping neighbors lead to a better subsequent regis-
tration. However, this performance gain comes at a cost and
hence introduces a trade-off. Tab. 1 tabulates the average
number of putative matches found by different methods. As
we can see, the size of correspondence set increases rapidly
as we relax the standard and keep more neighbors. In re-
turn, this means more computation time in the following
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Figure 1. Influences of different supervision signals. Reconstruction is the most essential loss for our network to generate local features
for matching tasks. Without it the descriptive-ness is lost. When all losses are combined, the network learns to extract the most powerful
features and achieves the best performance.

registration stage.

2. Quantitative Results
Distribution of hypotheses Fig. 3 shows the distribution
of poses predicted by RelativeNet and poses determined by
running RANSAC on the randomly selected subsets of cor-
responding points. Each hypothesis is composed of a rota-
tional and translational part. The former is represented as a
Rodrigues vector to keep it in R3. It is obvious that hypothe-
ses predicted by RelativeNet are centered more around the
ground truth pose, both in rotation and translation. It also
reveals the reason why the hypotheses of our network could
facilitate an easier and faster registration procedure.

Qualitative comparison against RANSAC Fig. 4 shows
some challenging cases where only a small number of cor-
rect correspondences are established. In these examples,
RANSAC fails to recover the pose information from the
small set of inliers hidden in a big set of mismatches. How-
ever, a registration procedure with the aid of RelativeNet
could succeed with a correct result. The qualitative com-
parison demonstrates that our method is robust at register-
ing fragment pairs even in extreme cases where insufficient
inliers are presented.

Multi-scan registration Finally, we apply our method in
registering multiple scans to a common reference frame. To
do that, we first align pairwise scans and obtain the most
likely relative pose per pair. These poses are then fed into a
global registration pipeline [2]. Note that while this method
can use a global iterative closest point alignment [1] in the
final stage, we deliberately omit this step to emphasize the
quality of our pairwise estimates. Hence, the outcome is a
rough, but nevertheless an acceptable alignment on which
we can optionally apply the global-ICP refining the points
and scans. The results are shown in Fig. 5 on the Red
Kitchen sequence of the 7-scenes [4] as well as in Fig. 6 on
the Sun3D Hotel sequence [5], a part of 3DMatch bench-
mark [6].
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(a) Loosely Equivariant Feature Matching
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(b) Invariant Feature Matching
Figure 2. Inlier ratio distribution of fragment pair matching result
using different local features from our framework. (a) Match-
ing results using equivariant features extracted by PC-FoldNet.
(b) Matching results using invariant features extracted by PPF-
FoldNet. Blue part stands for the portion of fragment pairs with
correspondence inlier ratio smaller than 5%. Matching results by
invariant features demonstrate a better quality for further registra-
tion procedure.
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Figure 3. Hypotheses distribution comparison between ones generated by RANSAC using randomly selected subset of correspondences
and ones predicted by our RelativeNet. Rotation and translation parts are shown separately. The first row plots the distributions in 3D space
and the following three rows are correspondent 2D projections from three different orthogonal view directions.
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Figure 4. Some challenging fragment pairs with only a small number of correct correspondences. RANSAC fails to estimate the correct
relative poses between them while our network is able to produce successful registration results. Especially, for the fragment pair in the
last row, only two correct local correspondences are found, which doesn’t satisfy the minimum number of inliers required by RANSAC,
but still correctly handled by our method.



(a) Snapshots of individual scans of the Red Kitchen sequence.

(b) Views of the reconstruction obtained by running our method on multiple pairwise scans (No ICP)

Figure 5. Reconstruction by 3D alignment on the entire Red Kitchen sequence of the 7scenes dataset [4]. We first compute the pairwise
estimates by our method and feed them into the pipeline of [2] for obtaining the poses in a globally coherent frame. Note that this dataset
is a real one, acquired by a Kinect scanner. We make no assumptions on the order of acquisition.



(b) Views of the reconstruction obtained by running our method on multiple pairwise scans (No ICP)

(a) Snapshots of individual scans of the Sun3D Hotel sequence.

Figure 6. Reconstruction by 3D alignment on the entire Sun3D Hotel sequence. The reconstruction procedure is identical to the one
of Fig. 5.



References
[1] P. J. Besl and N. D. McKay. Method for registration of 3-d shapes. In Robotics-DL tentative, pages 586–606. International

Society for Optics and Photonics, 1992.
[2] S. Choi, Q.-Y. Zhou, and V. Koltun. Robust reconstruction of indoor scenes. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2015.
[3] H. Deng, T. Birdal, and S. Ilic. Ppf-foldnet: Unsupervised learning of rotation invariant 3d local descriptors. In The

European Conference on Computer Vision (ECCV), 2018.
[4] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon. Scene coordinate regression forests for camera

relocalization in rgb-d images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2930–2937, 2013.

[5] J. Xiao, A. Owens, and A. Torralba. Sun3d: A database of big spaces reconstructed using sfm and object labels. In
Proceedings of the IEEE International Conference on Computer Vision, pages 1625–1632, 2013.

[6] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser. 3dmatch: Learning local geometric descriptors
from rgb-d reconstructions. In CVPR, 2017.


