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Appendix A: Adversarial Attack Methods

Fast Gradient Sign Method (FGSM) [1] is one of the
earliest attack techniques that has been demonstrated to suc-
cessfully produce adversarial samples. The FGSM attack
produces adversarial samples using the update rule:

x∗FGSM = x+ ε · sign(∇xL(x, y)),

where x is the unperturbed input. When the model is avail-
able to the attacker (white-box setting), the attack can be
run using the true gradient∇xL(h(x), y), however, in gray-
box and black-box settings, the attacker may habe access
to a surrogate gradient ∇xL(h

′(x), y), which in practice,
has been shown to be effective as well. A stronger version
of this attack is the Iterative Fast Gradient Sign Method
(I-FGSM) [6], where the adversarial input is generated by
iteratively applying the FGS update over m = {1, ...,M}
steps, following:

x(m) = x(m−1) + ε · sign(∇x(m−1)L(x(m−1), y),

where x∗IFGSM = x(M), and x(0) = x

A general version of the I-FGSM attack is the Projected
Gradient Descent (PGD) [7] attack, which clips the gra-
dients to project them back to the feasible image domain,
and also includes random restarts in the optimization pro-
cess. We use this attack over the I-FGSM attack due to its
stronger nature. The FGSM, I-FGSM, and PGD attacks ap-
proximately minimize the Chebyshev distance between the
input x and the generated adversarial sample x∗. Carlini-
Wagner’s `p (CW-Lp) attack attempts to find a solution to
an unconstrained optimization problem that jointly penal-
izes a differentiable surrogate for the model accuracy along
with a distance measure for regularization, such as the `2 or
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`∞ distance.

x∗CW-Lp = min
x′

[
‖x− x′‖2p + λf max(−κ, Z(x′)h(x)

−max{Z(x′)k : k 6= h(x)})
]

Herein, κ denotes a margin parameter, and the parameter
λf relatively weighs the losses from the distance penalty
and accuracy surrogate (hinge loss of predicting an incor-
rect class). The most common values for p are p = 2 and
p = ∞; we use the implementation of [2] to implement
FGSM, IFGSM, PGD, and CW-L2. For all the above at-
tacks, we enforce that the image remains within [0, 1]d by
clipping values.

Appendix B: Feature Construction
To evaluate the trade-off between robustness and accu-

racy of neural network features at different depths (layers),
we use features extracted from different layers of ResNet-
50 models [3] as the basis for retrieving nearest neighbors.
Since layers are very high-dimensional, we reduce the final
dimensionality of the feature vectors to 256 by performing a
spatial average pooling followed by PCA (see Table 1 for a
complete description). We found that spatial average pool-
ing step helps in increasing accuracy as well as the compu-
tational efficiency of PCA.

Feature Layer Uncompressed Size Pooled Size
conv 2 3 256× 56× 56 256× 7× 7
conv 3 4 512× 28× 28 512× 7× 7
conv 4 6 1024× 14× 14 1024× 4× 4
conv 5 1 2048× 7× 7 2048× 1× 1

Table 1. Feature vector details. All features are finally compressed
to a dimensionality of 256 by a PCA done over 3M samples.

The features are extracted using the PyTorch [8] frame-
work; we use the SciPy [5] implemention of online PCA
for dimensionality reduction. The PCA was computed on

1



3 million randomly selected samplesfor the IG and YFCC
datasets, and on the complete training set for ImageNet.

For nearest-neighbor matching, we construct a pipeline
using the GPU implementation of the FAISS [4] library; we
refer the readers to the original paper for more details about
billion-scale fast similarity search.

Appendix C: Hard versus Soft
Combination of Predictions

As discussed in the main paper, we evaluate both hard
and soft prediction combinations, as described below:

Soft Combination (SC): We return the weighted av-
erage of the softmax probability vector of all the nearest
neighbors. The predicted class is then the argmax of this
average vector. This corresponds to a “soft” combination of
the model predictions over the data manifold.

Hard Combination (HC): In this case, each nearest
neighbor votes for its “hard” predicted class with some
weight. The final prediction is then taken as the most com-
monly predicted class.

In Table 2, we present the results of both these ap-
proaches with uniform weighing (UW) and confidence-
based weighing (CBW). These results were obtained using
the same experimental setup as described in the main paper.

Appendix D: Results with FGSM and CWL-2
Below, we present results that measure the effectiveness

of our defense strategy against the FGSM and CWL-2 at-
tacks. All experiments follow the same experimental setup
as described in the main paper (but use a different attack
method).

Effect of Number of Neighbors, K. Figures 1 and 2 de-
scribe the effect of varying K under FGSM and CWL-2
attacks. We observe similar trends as for the PGD attacks.

Effect of Image Database Size. Figure 3 and 4 describe
the effect of varying the index size under FGSM and CWL-
2 attacks. We observe similar trends as for the PGD attacks.

Effect of Feature Space. Figure 5 and 6 present classi-
fication accuracies obtained using CBW-D defenses based
on four different feature representations of the images in
the IG-1B-Targeted database, for the FGSM and CWL-2 at-
tacks respectively. We observe a similar trend as in the case
of PGD attacks.
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Figure 1. Classification accuracy of ResNet-50 using our CBW-D
defense on FGSM adversarial ImageNet images, as a function of
the normalized `2 norm of the adversarial perturbation. Defenses
are implemented via nearest-neighbor search using conv 5 1 fea-
tures on the IG-1B-Targeted (solid lines) and IG-100M-Targeted
(dashed lines). Results are for the black-box setting.
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Figure 2. Classification accuracy of ResNet-50 using our CBW-D
defense on CWL-2 adversarial ImageNet images, as a function of
the normalized `2 norm of the adversarial perturbation. Defenses
are implemented via nearest-neighbor search using conv 5 1 fea-
tures on the IG-1B-Targeted (solid lines) and IG-100M-Targeted
(dashed lines). Results are for the black-box setting.
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Image database

Clean Gray box Black box
Soft Combination Hard Combination Soft Combination Hard Combination Soft Combination Hard Combination

UW CBW-E CBW-D UW CBW-E CBW-D UW CBW-E CBW-D UW CBW-E CBW-D UW CBW-E CBW-D UW CBW-E CBW-D

IG-50B-All (conv 5 1-RMAC) 0.632 0.644 0.676 0.637 0.642 0.649 0.395 0.411 0.427 0.402 0.403 0.414 0.448 0.459 0.491 0.457 0.462 0.473
IG-1B-Targeted (conv 5 1) 0.659 0.664 0.681 0.668 0.671 0.673 0.415 0.429 0.462 0.418 0.423 0.437 0.568 0.574 0.587 0.554 0.561 0.571
IN-1.3M (conv 5 1) 0.472 0.469 0.471 0.475 0.472 0.473 0.285 0.286 0.286 0.291 0.289 0.293 0.311 0.312 0.312 0.316 0.309 0.314

Table 2. ImageNet classification accuracies of ResNet-50 on PGD-generated images with a normalized `2 distance of 0.06, using our
nearest-neighbor defenses with three different image databases on both soft and hard combination techniques, with three different weighing
strategies (UW, CBW-E and CBW-D), and K=50. Accuracies on clean images are included for reference.
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Figure 3. Classification accuracy of ResNet-50 using the CBW-D defense on FGSM adversarial ImageNet images, using the IG-N -Targeted
database (solid lines) and IG-N -All database (dashed lines) with different values of N . Results are presented in the gray-box (left) and
black-box (right) settings.
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Figure 4. Classification accuracy of ResNet-50 using the CBW-D defense on CWL-2 adversarial ImageNet images, using the IG-N -
Targeted database (solid lines) and IG-N -All database (dashed lines) with different values of N . Results are presented in the gray-box
(left) and black-box (right) settings.
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Figure 5. Classification accuracy of ResNet-50 using the CBW-D defense on FGSM adversarial ImageNet images, as a function of the
normalized `2 norm of the adversarial perturbation. Defenses use four different feature representations of the images in the IG-1B-Targeted
image database. Results are presented for the gray-box (left) and black-box (right) settings.
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Figure 6. Classification accuracy of ResNet-50 using the CBW-D defense on CWL-2 adversarial ImageNet images, as a function of the
normalized `2 norm of the adversarial perturbation. Defenses use four different feature representations of the images in the IG-1B-Targeted
image database. Results are presented for the gray-box (left) and black-box (right) settings.


