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A. Supplementary
A.1. Multi-label classification with GNN

In this section, we give additional information about the
Graph Neural Networks (GNN) used in our work. We first
show the algorithm used to predict the classification scores
with a GNN in Algorithm 1. The input x ∈ RC of the GNN
is the ConvNet output, where C is the number of categories.

The fM function in the message update function M is
a fully connected layer followed by a ReLU. Because the
graph is fully-connected, the message update function M
averages on all the nodes of the graph excepts the current
node v i.e. Ωv = V \ {v}. Similarly to [11], the final pre-
diction uses both first and last hidden states. We observe
that using both first and last hidden states is better than us-
ing only the last hidden state. According to [11], we use
T = 3 iterations in our experiments.

A.2. Experimental details

Datasets. We perform experiments on large publicly
available multi-label datasets: Pascal VOC 2007 [4], MS
COCO [9] and NUS-WIDE [1]. Pascal VOC 2007 dataset
contains 5k/5k trainval/test images of 20 objects categories.
MS COCO dataset contains 123k images of 80 objects cate-
gories. We use the 2014 data split with 83k train images and
41k val images. NUS-WIDE dataset contains 269,648 im-
ages downloaded from Flickr that have been manually an-
notated with 81 visual concepts. We follow the experimen-
tal protocol in [5] and use 150k randomly sampled images
for training and the rest for testing. The results on NUS-
WIDE cannot be directly comparable with the other works
because the number of total images is different (209,347 in
[5], 200,261 in [8]). The main reason is that some provided
URLs are invalid or some images have been deleted from
Flickr. For our experiments, we collected 216,450 images.

We also performs experiments on the largest publicly
available multi-label dataset: Open Images [7]. This dataset
is partially annotated with human labels and machine gener-
ated labels. For our experiments, we use only human labels
on the 600 boxable classes. On the training set, only 0.9%

Algorithm 1 Graph Neural Network (GNN)
Input: ConvNet output x

1: Initialize the hidden state of each node v ∈ V with the
output of the ConvNet.

h0
v = [0, . . . , 0, xv, 0, . . . , 0] ∀v ∈ V (1)

2: for t = 0 to T-1 do
3: Update message of each node v ∈ V based on the

hidden states

mt
v =M({htu|u ∈ Ωv}) =

1

|Ωv|
∑
u∈Ωv

fM(htu)

(2)

4: Update hidden state of each node v ∈ V based on the
messages

ht+1
v = F(htv,m

t
v) = GRU(htv,m

t
v) (3)

5: end for
6: Compute the output based on the first and last hidden

states
ȳ = s(h0

v,h
T
v ) = h0

v + hTv (4)

Output: ȳ

of the labels are available.

Implementation details. The hyperparameters of the
WELDON pooling function [2, 3] are k+ = k− = 0.1. The
models are implemented with PyTorch [10] and are trained
with SGD during 20 epochs with a batch size of 16. The
initial learning rate is 0.01 and it is divide by 10 after 10
epochs. During training, we only use random horizontal flip
as data augmentation. Each image is resized to 448 × 448
with 3 color channels. On Open Images dataset, unlike [7]
we do not train from scratch the network. We use a simi-
lar protocol that on the others datasets: we fine-tune a model

1



pre-train on ImageNet but stop the training when the valida-
tion performance does not increase. Because the training set
has 1.7M images, the model converge in less than 5 epochs.

A.3. Multi-label metrics

In this section, we introduce the metrics used to evaluate
the performances on multi-label datasets. We note y(i) =

[y
(i)
1 , . . . , y

(i)
C ] ∈ Y ⊆ {−1, 0, 1}C the ground truth label

vector and ŷ(i) = [ŷ
(i)
1 , . . . , ŷ

(i)
C ] ∈ {−1, 1}C the predicted

label vector of the i-th example.

Zero-one exact match accuracy (0-1). This metric con-
siders a prediction correct only if all the labels are correctly
predicted:

m0/1(D) =
1

N

N∑
i=1

1[y(i) = ŷ(i)] (5)

where 1[.] is an indicator function.

Per-class precision/recall (PC-P/R).

mPC−P (D) =
1

C

C∑
c=1

N correct
c

Npredict
c

(6)

mPC−R(D) =
1

C

C∑
c=1

N correct
c

Ngt
c

(7)

where N correct
c is the number of correctly predicted images

for the c-th label, Npredict
c is the number of predicted im-

ages, Ngt
c is the number of ground-truth images. Note that

the per-class measures treat all classes equal regardless of
their sample size, so one can obtain a high performance by
focusing on getting rare classes right.

Overall precision/recall (OV-P/R). Unlike per-class
metrics, the overall metrics treat all samples equal regard-
less of their classes.

mOV−P (D) =

∑C
c=1N

correct
c∑C

c=1N
predict
c

(8)

mOV−R(D) =

∑C
c=1N

correct
c∑C

c=1N
gt
c

(9)

Macro-F1 (M-F1). The macro-F1 score [15] is the F1
score [12] averaged across all categories.

mMF1(D) =
1

C

C∑
c=1

F c1 (10)

Given a category c, the F1 measure, defined as the harmonic
mean of precision and recall, is computed as follows:

F c1 =
2P cRc

P c +Rc
(11)

where the precision (P c) and the recall (Rc) are calculated
as follows:

P c =

∑N
i=1 1[y

(i)
c = ŷ

(i)
c ]∑N

i=1 ŷ
(i)
c

(12)

Rc =

∑N
i=1 1[y

(i)
c = ŷ

(i)
c ]∑N

i=1 y
(i)
c

(13)

and y(i)
c ∈ {0, 1}

Micro-F1 (m-F1). The micro-F1 score [13] is computed
using the equation of F c1 and considering the predictions as
a whole

mmF1(D) =
2
∑C
c=1

∑N
i=1 1[y

(i)
c = ŷ

(i)
c ]∑C

c=1

∑N
i=1 y

(i)
c +

∑C
c=1

∑N
i=1 ŷ

(i)
c

(14)

According to the definition, macro-F1 is more sensitive to
the performance of rare categories while micro-F1 is af-
fected more by the major categories.

A.4. Analysis of the initial set of labels

In this section, we analyse the initial set of labels for
the partial label scenario. We report the results for 4 ran-
dom seeds to generate the initial set of partial labels. The
experiments are performed on MS COCO val2014 with a
ResNet-101 WELDON. The results are shown in Table 1
and Figure 1 for different label proportions and metrics. For
every label proportion and every metric, we observe that the
model is robust to the initial set of labels.



MAP 0-1 exact match

Macro-F1 Micro-F1

Per-class Precision Per-class Recall

Overall Precision Overall Recall
Figure 1. Results for differents metrics on MS COCO val2014 to analyze the sensibility of the initial label set.
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A.5. Analysis of the labeling strategies

In this section we analysis the labeling strategies for dif-
ferent network architectures. The results are shown in Ta-
ble 2 and Figure 2 on MS COCO dataset. Overall, the re-
sults are very similar. For a given proportion of labels, we
observe that the partial labels strategy is better that the com-
plete image labels. The improvement increases when the
label proportion decreases. The performance of a model
learned with noisy labels drops significantly, even for large
proportion of clean labels.

In Figure 3, we also show the results for different met-
rics. For MAP, Macro-F1 and Micro-F1, we observe a sim-
ilar behaviour: the partial labels strategy has better perfor-
mances than the complete image labels strategy. For the 0-1
exact match metric, we observe that the complete image la-
bels strategy has better performances than the complete im-
age labels strategy. For this metric, the predictions of all the
categories must be corrected, so it advantages the complete
image labels strategy because some training images have all
the labels whereas in the partial labels strategy, none of the
training images have all labels. For the precision and re-
call metrics, the behaviours are different for the complete
image labels strategy and the partial labels strategy. We
note that the complete image labels strategy has a better per-
class/overall precision than the partial labels strategy but is
has a lower per-class/overall recall than the partial labels
strategy.

Comparison to noisy+ strategy. In Table 3, we show
results for the noisy+ strategy on Pascal VOC 2007, MS
COCO and NUS-WIDE for different metrics. For every
dataset, we observe that the noisy+ strategy drops the per-
formances of all the metrics with respect to the model
learned with only 10% of clean labels.



architecture labels label proportion
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ResNet-50
partial 61.26 63.78 65.21 66.22 66.97 67.60 68.16 68.58 69.01 69.33
dense 54.29 59.67 62.50 64.28 65.60 66.68 67.55 68.26 68.80 69.32
noisy - - - - 3.75 39.77 56.82 62.93 66.24 69.33

ResNet-50 WELDON
partial 69.91 72.37 73.74 74.53 75.25 75.77 76.25 76.66 77.02 77.28
dense 62.16 68.04 71.14 73.01 74.17 75.14 75.83 76.42 76.88 77.28
noisy - - - - 3.73 52.99 67.08 72.03 74.69 77.29

ResNet-101 WELDON
partial 72.15 74.49 75.76 76.56 77.22 77.73 78.17 78.53 78.84 79.22
dense 65.22 71.00 73.80 75.44 76.59 77.44 78.08 78.61 78.90 79.24
noisy - - - - 3.63 53.10 69.09 74.06 76.85 79.18

ResNeXt-101 WELDON
partial 75.74 77.80 78.95 79.64 80.22 80.61 80.94 81.24 81.48 81.69
dense 69.03 74.58 77.13 78.50 79.38 80.15 80.65 81.05 81.40 81.71
noisy - - - - 3.63 49.26 70.16 75.22 78.28 81.66

Table 2. Comparison of the labeling strategies for different label proportions and different architectures on MS COCO val2014.

ResNet-50 ResNet-50 WELDON

ResNet-101 WELDON ResNeXt-101 WELDON
Figure 2. Comparison of the labeling strategies for different label proportions and different architectures on MS COCO val2014.



MAP 0-1 exact match

Macro-F1 Micro-F1

Per-class Precision Per-class Recall

Overall Precision Overall Recall
Figure 3. Comparison of the labeling strategies for different metrics on MS COCO val2014.



dataset strategy clean label noisy label MAP 0-1 M-F1 m-F1 PC-P PC-R OV-P OV-R

VOC 2007
clean 100 0 93.93 79.16 88.90 91.12 90.72 87.34 93.40 88.95
noisy+ 97.1 2.9 90.94 62.21 78.11 78.62 95.41 68.64 97.20 66.00
partial 10% 10 0 89.09 47.46 74.55 77.84 63.35 94.16 66.02 94.81

MS COCO
clean 100 0 79.22 40.69 73.26 77.80 80.16 68.21 84.31 72.23
noisy+ 97.6 2.4 71.60 20.28 38.62 33.72 91.76 28.17 97.34 20.39
partial 10% 10 0 72.15 22.04 65.82 70.09 59.76 74.78 62.56 79.68

NUS-WIDE
clean 100 0 54.88 42.29 51.88 71.15 58.54 49.33 73.83 68.66
noisy+ 98.6 1.4 47.44 36.07 18.83 28.53 59.71 13.95 83.72 17.19
partial 10% 10 0 51.14 25.98 51.36 65.52 41.80 69.23 53.62 84.19

Table 3. Comparison with a webly-supervised strategy (noisy+) on MS COCO. Clean (resp. noisy) means the percentage of clean (resp.
noisy) labels in the training set. Noisy+ is a labeling strategy where there is only one positive label per image.



A.6. Comparison of the loss functions

In this section, we analyse the performances of the BCE
and partial-BCE loss functions for different metrics. The
results on MS COCO (resp. Pascal VOC 2007) are shown
in Figure 5 (resp. Figure 7) and the improvement of the
partial-BCE with respect to the BCE is shown in Figure 6
(resp. Figure 8). We observe that the partial-BCE sig-
nificantly improves the performances for MAP, 0-1 exact
match, Macro-F1 and Micro-F1 metrics. We note that the
improvement is bigger when the label proportion is lower.
The proposed loss also improves the (overall and per-class)
recall for both datasets. On Pascal VOC 2007, it also im-
proves the overall and per-class precision. However, we ob-
serve that the

We observe that decreasing the proportion of known la-
bels can slightly improves the performances with respect
to the model trained with all the annotations. This phe-
nomenon is because of the tuning of the learning rate and
the hyperparameter γ (Figure 6). Note that the BCE and the
partial-BCE have the same results for the label proportion
100% because they are equivalent by definition. In the pa-
per, we used the same training setting (learning rate, weight
decay, etc.) as [3] for each model and dataset. In Figure 4,
we observe that using a learning rate of 0.02 increases the
performance and leads to a monotone increase of the perfor-
mance with respect to the label proportion, but the optimal
learning rate depends on the dataset. It is possible to im-
prove the results by tuning carefully these hyperparameters,
but we observe that the partial-BCE is still better than the
BCE for a large range of LRs and for small label propor-
tions which is the main focus of the paper.

Figure 4. Analysis of the learning rate on MS COCO dataset.



MAP 0-1 exact match

Macro-F1 Micro-F1

Per-class Precision Per-class Recall

Overall Precision Overall Recall
Figure 5. Results for different metrics on MS COCO val2014.



MAP 0-1 exact match

Macro-F1 Micro-F1

Per-class Precision Per-class Recall

Overall Precision Overall Recall
Figure 6. Improvement analysis between partial-BCE and BCE for differents metrics on MS COCO val2014.



MAP 0-1 exact match

Macro-F1 Micro-F1

Per-class Precision Per-class Recall

Overall Precision Overall Recall
Figure 7. Results for different metrics on Pascal VOC 2007.



MAP 0-1 exact match

Macro-F1 Micro-F1

Per-class Precision Per-class Recall

Overall Precision Overall Recall
Figure 8. Improvement analysis between partial-BCE and BCE for differents metrics on Pascal VOC 2007.



A.7. Analysis of the loss function

In this section, we analyze the hyperparameter of the loss
function for several network architectures. The models are
trained on the train2014 set minus 5000 images that are used
as validation set to evaluate the performances. The Figure 9
shows the results on MS COCO. We observe a similar be-
havior for all the architectures. Overall, using a normaliza-
tion value g(0.1) between 3 and 50 significantly improves
the performances with respect to the normalization by the
number of categories (g(0.1) = 1). The loss is robust to the
value of this hyperparmeter.



ResNet-50 ResNet-50 WELDON

ResNet-101 ResNet-101 WELDON
Figure 9. Analysis of the normalization value for 10% of known labels (i.e. g(0.1)) on MS COCO. (x-axis log-scale)



A.8. Comparison to existing model for missing la-
bels

As pointed out in the related work section, most of the
existing models to learn with missing labels are not scalable
and do not allow experiments on large-scale dataset like
MS COCO and NUS-WIDE. We compare our model with
the APG-Graph model [14] that models structured seman-
tic correlations between images on the Pascal VOC 2007
dataset. Unlike our method, the APG-Graph model does
not allow to fine-tune the ConvNet.

Figure 10. Comparison with APG-Graph model on Pascal VOC
2007 for different proportion of known labels.

A.9. What is the best strategy to predict missing
labels?

This section extends the section 4.3 in the paper. First, to
compute the Bayesian uncertainty, we use the setting used
in the original paper [6]. The results for different strategies
and hyperparameters are shown in Table 4. G defines how
the examples are selected during training. In the paper, we
only explain how to find the solution with respect to v. G
depends on the strategy and is defined as:

G(v; θ) = −
N∑
i=1

C∑
c=1

vic log

(
1

1 + e−θ

)
for strategy [a].

For strategy [a] and [d], we observe that using a small
threshold is better than a large threshold. On the contrary,
for strategy [c] we observe that using a large threshold is
better than a small threshold, but the results are worse than
strategy [a]. For strategy [b], labeling a large proportion of
labels per mini-batch is better than labeling a small propor-
tion of labels. For strategy [e], we note that using a GNN
improves the performances of the model and the model is
more robust to the threshold hyperparameter θ.



Relabeling MAP 0-1 Macro-F1 Micro-F1 label prop. TP TN GNN

2 steps (no curriculum) -1.49 6.42 2.32 1.99 100 82.78 96.40 3

[a] Score threshold θ = 1 0.00 11.31 3.71 4.25 97.87 82.47 97.84 3
[a] Score threshold θ = 2 0.34 11.15 4.33 4.26 95.29 85.00 98.50 3
[a] Score threshold θ = 5 0.31 5.02 2.60 1.83 70.98 96.56 99.44 3

[b] Score proportion θ = 0.1 0.45 -1.20 -0.28 -0.68 26.70 99.28 99.19 3
[b] Score proportion θ = 0.2 0.36 0.20 0.70 0.10 42.09 98.35 99.33 3
[b] Score proportion θ = 0.3 0.28 0.91 1.09 0.37 55.63 97.82 99.38 3
[b] Score proportion θ = 0.4 0.55 2.95 2.33 1.28 67.41 96.87 99.38 3
[b] Score proportion θ = 0.5 0.22 4.02 2.76 1.74 77.40 95.52 99.30 3
[b] Score proportion θ = 0.6 0.41 6.17 3.63 2.52 85.37 93.16 99.15 3
[b] Score proportion θ = 0.7 0.35 7.49 3.83 3.07 91.69 89.40 98.81 3
[b] Score proportion θ = 0.8 0.17 8.40 3.70 3.25 96.24 84.40 98.10 3

[c] Postitive only - score θ = 1 -1.61 -31.75 -18.07 -18.92 16.79 36.42 - 3
[c] Postitive only - score θ = 2 -0.80 -21.31 -10.93 -12.08 14.71 47.94 - 3
[c] Postitive only - score θ = 5 0.31 -4.58 -1.92 -2.23 12.01 79.07 - 3

[d] Ensemble score θ = 1 -0.31 10.16 3.61 3.94 97.84 82.12 97.76 3
[d] Ensemble score θ = 2 0.23 11.31 4.16 4.33 95.33 84.80 98.53 3
[d] Ensemble score θ = 5 0.27 3.78 2.38 1.53 70.77 96.56 99.44 3

[e] Bayesian uncertainty θ = 0.1 0.26 1.84 1.36 0.64 22.63 25.71 99.98
[e] Bayesian uncertainty θ = 0.2 0.29 8.49 4.05 3.66 60.32 48.39 99.82
[e] Bayesian uncertainty θ = 0.3 0.34 10.15 4.37 3.72 77.91 61.15 99.24
[e] Bayesian uncertainty θ = 0.4 0.30 9.05 4.17 3.37 87.80 68.56 98.70
[e] Bayesian uncertainty θ = 0.5 0.26 8.32 3.83 3.05 92.90 70.96 98.04

[e] Bayesian uncertainty θ = 0.1 0.36 2.71 1.91 1.22 19.45 38.15 99.97 3
[e] Bayesian uncertainty θ = 0.2 0.30 10.76 4.87 4.66 57.03 62.03 99.65 3
[e] Bayesian uncertainty θ = 0.3 0.59 12.07 5.11 4.95 79.74 68.96 99.23 3
[e] Bayesian uncertainty θ = 0.4 0.43 10.99 4.88 4.46 90.51 70.77 98.57 3
[e] Bayesian uncertainty θ = 0.5 0.45 10.08 3.93 3.78 94.79 74.73 98.00 3

Table 4. Analysis of the labeling strategy of missing labels on Pascal VOC 2007 val set. For each metric, we report the relative scores
with respect to a model that does not label missing labels. TP (resp. TN) means true positive (resp. true negative). Label proportion is the
proportion of training labels (clean + weak labels) used at the end of the training. For the strategy labeling only positive labels, we report
the label accuracy instead of the TP rate.



A.10. Final results

In Figure 11, we show the results of our final model
that uses the partial-BCE loss, the GNN and the labeling
of missing labels. We compare our model to two baselines:
(a) a model trained with the standard BCE where the data
are labeled with the partial labels strategy (blue) and (b) a
model trained with the standard BCE where the data are la-
beled with the complete image labels strategy (red). We ob-
serve that our model has better performances than the two
baselines for most of the metrics. In particular, our final
model has significantly better 0-1 exact match performance
than the baseline (b), whereas the baseline with partial la-
bels (a) has lower performance than the baseline (b). We
note that the overall precision of our model is worse than
the baseline (b), but the overall recall of our model is largely
better than the baseline (b).
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Figure 11. The results of our final model with two baselines (complete image labeling and BCE with partial labels) for different metrics on
MS COCO val2014.
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