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This supplementary material provides the following ad-
ditional information: Section 1 details how we chose the
threshold for Lowe’s ratio test [5] used for the 3D recon-
structions in Section 5.2 in the paper. As mentioned in
Section 4.3 in the paper, Section 2 provides implementa-
tion details on the architecture. In addition, the section also
evaluates another backbone architecture (ResNet [3]). Sec-
tion 3 provides additional details on the loss function used
to train our method. Section 4 shows qualitative examples
for the matches found with our approach on the InLoc [14]
and Aachen Day-Night [8, 9] datasets.

1. Impact of the ratio test on D2 features

Throughout our experiments on the local feature evalu-
ation benchmark [11], we noticed that Lowe’s ratio test [5]
plays an important role because it significantly reduces the
number of wrong registrations due to repetitive structures
and semantically similar scenes.

In order to find an adequate ratio threshold for our fea-
tures, we employ Lowe’s methodology [5]: we compute the
probability density functions (PDFs) of correct and incor-
rect matches with respect to the ratio test threshold. How-
ever, contrary to Lowe’s evaluation, we considered only
mutual nearest neighbors during the matching process.

Our evaluation was done on the entire HPatches [1]
image pairs dataset consisting of 580 pairs from 116 se-
quences (57 with illumination changes and 59 with view-
point changes). A match is considered correct if its pro-
jection error, estimated using the homographies provided
by the dataset, is below 4 pixels - the default threshold in
COLMAP [10, 12] during geometric verification and bun-
dle adjustment. To take into account the possible errors in
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Figure 1: Ratio PDFs for D2 multi-scale features. PDF in terms
of ratio on the full HPatches [1] image pairs dataset for the D2
off-the-shelf and fine-tuned features. There is no clear separation
between the mean ratios of correct and incorrect matches as in the
case of SIFT [5].

annotations and to have a clear separation between correct
and incorrect matches, the threshold for incorrect matches
is set to 20 pixels. Matches with projection errors between 4
and 20 pixels are therefore discarded during this evaluation.



Figure 1 shows the two PDFs. As can be seen, the D2
features do not work too well with ratio filtering because
the mean ratio of correct matches is close to the one of in-
correct matches. Still, we used thresholds of 0.90 for the
off-the-shelf descriptors and 0.95 for the fine-tuned ones,
which filter out 79.9% and 74.4% of incorrect matches, re-
spectively. Unfortunately, these thresholds also discard a
significant amount of correct matches (23.3% and 21.9%,
respectively) which can have a negative impact on the num-
ber of registered images and sparse points.

In practice, we suggest not using the ratio test for cam-
era localization under difficult conditions (e.g. day-night,
indoors). For 3D reconstruction, using the threshold sug-
gested above and / or increasing the minimum number of
inlier matches required for an image pair to be considered
during Structure-from-Motion (SfM) should be sufficient to
avoid most wrong registrations. Please note that, in the
second case, the geometric verification can be significantly
slower as RANSAC needs to handle a larger outlier ratio.

2. Details of the backbone architecture
For the feature extraction network F , we used a VGG16

network pretrained on the ImageNet dataset [2], truncated
after the conv4 3 layer, as detailed in Section 4.3 of the
paper. In addition, as also detailed in Section 4.3, we use a
different image and feature resolution during training com-
pared to testing. In particular, during testing, we take ad-
vantage of dilated convolutions [4, 15] to increase the reso-
lution of the feature maps - this is not done in training due
to memory limitations. More detailed descriptions of the
network architectures during the training and testing phases
are provided in Tables 1 and 2, respectively.

We additionally assess the choice of the network used for
feature extraction, by performing a comparison between the
chosen VGG16 [13] architecture and ResNet50 [3] (which
is the state of the art backbone architecture used in vari-
ous other works). We evaluate them on the HPatches image
pairs dataset using the same evaluation protocol that is de-
scribed in Section 5.1 of the main paper.

For both architectures, we used weights trained on Ima-
geNet [2]. In the case of ResNet50, the network was trun-
cated after conv4 6 (following the approach in DELF [7]).
At this point in the architecture, the resolution is 1/16th of the
input resolution and the descriptors are 1024-dimensional.
However, in the case of the original VGG16, the output after
conv4 3 has 1/8th of the input resolution and 512 channels.
In order to account for this difference in resolution, we use
dilated convolutions (also sometimes referred to as “atrous
convolutions”) to increase the resolution for the ResNet50
network. In addition, dilated convolutions are applied to
both networks to further increase the feature resolution to
1/4th of the input resolution. For simplicity, only single-
scale features are considered in this comparison.

Layer Stride Dilation ReLU Resolution

input (256 × 256) - 3 ch. ×1

conv1 1 - 3 × 3, 64 ch. 1 1 X ×1
conv1 2 - 3 × 3, 64 ch. 1 1 X ×1
pool1 - 2 × 2, max. 2 1 ×1/2

conv2 1 - 3 × 3, 128 ch. 1 1 X ×1/2
conv2 2 - 3 × 3, 128 ch. 1 1 X ×1/2
pool2 - 2 × 2, max. 2 1 ×1/4

conv3 1 - 3 × 3, 256 ch. 1 1 X ×1/4
conv3 2 - 3 × 3, 256 ch. 1 1 X ×1/4
conv3 3 - 3 × 3, 256 ch. 1 1 X ×1/4
pool3 - 2 × 2, max. 2 1 ×1/8

conv4 1 - 3 × 3, 512 ch. 1 1 X ×1/8
conv4 2 - 3 × 3, 512 ch. 1 1 X ×1/8
conv4 3 - 3 × 3, 512 ch. 1 1 ×1/8

Table 1: Training architecture. During training, we use the de-
fault VGG16 [13] architecture up to conv4 3, and fine-tune the
last layer (conv4 3).

Layer Stride Dilation ReLU Resolution

input (∼ 1200 × 1600) - 3 ch. ×1

conv1 1 - 3 × 3, 64 ch. 1 1 X ×1
conv1 2 - 3 × 3, 64 ch. 1 1 X ×1
pool1 - 2 × 2, max. 2 1 ×1/2

conv2 1 - 3 × 3, 128 ch. 1 1 X ×1/2
conv2 2 - 3 × 3, 128 ch. 1 1 X ×1/2
pool2 - 2 × 2, max. 2 1 ×1/4

conv3 1 - 3 × 3, 256 ch. 1 1 X ×1/4
conv3 2 - 3 × 3, 256 ch. 1 1 X ×1/4
conv3 3 - 3 × 3, 256 ch. 1 1 X ×1/4

pool3 - 2 × 2, avg. 1 1 ×1/4

conv4 1 - 3 × 3, 512 ch. 1 2 X ×1/4
conv4 2 - 3 × 3, 512 ch. 1 2 X ×1/4

conv4 3 - 3 × 3, 512 ch. 1 2 1 ×1/4

Table 2: Testing architecture. At test time, we slightly modify
the training architecture: the last pooling layer pool3 is replaced
by an average pooling with a stride of 1 and the following convo-
lutional layers are dilated by a factor of 2. This maintains the same
receptive field but offers higher resolution feature maps.

The results can be seen in Figure 2. Dilated convolu-
tions [4, 15] increase the number of detections and the per-
formance of D2 features especially in the case of viewpoint
changes. The ResNet50 features also benefit from dilated
convolutions and the increase in the resolution. However,
although ResNet50 features seem slightly more robust to
illumination changes and are able to outperform VGG16
features for thresholds larger than 6.5 pixels, they are less
robust to viewpoint changes. Overall, ResNet50 features
obtain worse results in this evaluation which motivated our
decision to use VGG16.

1We noticed that ReLU has a significant negative impact on the off-the-
shelf descriptors, but not on the fine-tuned ones. Thus, we report results
without ReLU for the off-the-shelf model and with ReLU for the fine-tuned
one.
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Method Feature map res. # Features # Matches

VGG16 ×1/8 2.7K 1.1K
VGG16 ×1/4 3.0K 1.2K
ResNet50 ×1/16 1.5K 0.6K
ResNet50 ×1/8 3.1K 1.1K
ResNet50 ×1/4 8.5K 2.5K

Figure 2: Evaluation of different backbone architectures on the HPatches image pairs. The original networks are in bold - the others
were obtained by removing the stride of the deepest layers and adding dilations to the subsequent ones. Dilated convolutions offer more
keypoints and better performance in viewpoint sequences. VGG16 outperforms ResNet50 by a significant margin even at a similar feature
map resolution.

Figure 3: In-image-pair negative mining procedure. For each
correspondence c : A ↔ B, the negative sample is chosen be-
tween the hardest negative of A in I2 (N2) or of B in I1 (N1).
Since adjacent pixels at feature map level have overlapping recep-
tive fields in the input image, the negative descriptor is chosen to
be at least K pixels away from the ground-truth correspondence.

3. Details of the training loss

This section gives more insight into the loss L that we
used for fine-tuning the conv4 3 layer of the VGG16 net-
work. In particular, in Figure 3 we explain in more detail
the in-image-pair negative mining expressed in Equations
(10) and (11) of the paper.

The parameter K controls the size of the neighbourhood
from where negative samples are not selected. For a value
of K = 0, all feature map pixels apart from the consid-
ered correspondence c : A ↔ B are considered as possi-
ble negatives. In this case, a value of the margin loss m(c)
lower than M (p(c) < n(c)) signifies that A and B would
be matched using mutual nearest neighbors. This is due
to the symmetric negative selection. However, in practice,
this is too restrictive since adjacent pixels have a signifi-
cant overlap in their receptive field so the descriptors can be
very close. Since the receptive field at the conv4 3 level
is around 65 × 65 pixels at the input resolution, we choose
a value of K = 4 at the feature map level, which enforces

that potential negatives have less than 50% spatial overlap.
Another parameter of the training loss is the margin M .

Since the descriptors are L2 normalized, the squared dis-
tance between two descriptors is guaranteed to be lower
than 4. We have settled for M = 1 as in previous work [6].
It is worth noting that, due to the the negative mining
scheme, this margin is rarely reached, i.e., the detection
scores continue to be optimized.

Figure 4 shows the soft detection scores before and af-
ter fine-tuning. As expected, some salient points have
increased scores, while repetitive structures are weighted
down. Even though most of our training data is from out-
doors scenes, these observations seem to translate well to
indoors images too.

4. Qualitative examples
Figures 5 and 6 show examples from the InLoc [14]

dataset: firstly, we show a few good matches in challeng-
ing conditions (significant viewpoint changes and texture-
less areas) and then we illustrate the main failure modes
of D2 features on indoors scenes (repeated objects / pat-
terns). Figure 7 shows some example matches on the diffi-
cult scenes from the Aachen Day-Night [8,9] camera local-
ization challenge.
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Figure 4: Soft detection scores for different scenes before and after fine-tuning. White represents low soft-detection scores while red
signifies higher ones. The training lowers the soft-detection scores on repetitive structures (e.g. ground, floor, walls) while it enhances the
score on more distinctive points. This shown by the increased contrast of the trained soft-detection maps with respect to their off-the-shelf
counterparts.



Figure 5: Examples of correctly matched image pairs from the
InLoc [14] dataset. Our features are robust to significant changes
in viewpoint as it can be seen in the first example. In texture-
less areas, our features act as an object matcher - correspondences
are found between the furniture of different scenes. Sometimes,
matches are even found across windows on nearby buildings.

Figure 6: Failure cases from the InLoc [14] dataset. Even
though they are visually correct, the matches sometimes put in cor-
respondence identical objects from different scenes. Another typ-
ical error case is due to repeated patterns (e.g. on carpets) which
yield a significant number of inliers.



Figure 7: Examples of correctly matched image pairs from the Aachen Day-Night [8, 9] dataset. Our features consistently provide a
significant number of good matches between images with strong illumination changes. The first two image pairs come from scenes where
no other method was able to register the night-time image. For the last two, DELF [7] was the only other method that succeeded.
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