
Mixture Density Generative Adversarial Networks
Supplementary Material

Hamid Eghbal-zadeh1 Werner Zellinger2,3 Gerhard Widmer1

1 LIT AI Lab & Institute of Computational Perception, Johannes Kepler University Linz
2 Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz

3 Software Compenetce Center Hagenberg GmbH
{hamid.eghbal-zadeh, werner.zellinger, gerhard.widmer}@jku.at

1. Extended Results and Discussion
1.1. Hyper-parameter grid search

We provide evaluation results for hyper-parameter grid search with 3 different variances and 5 different number of gaussian
components on two mode discovery datasets (grid 2D in Table 1 and ring 2D in Table 2). The results show that overall the
variance of 1

4 = 0.25 achieves better results compared to lower ( 16 = 0.16) and higher ( 12 = 0.5) variances. As can be
seen, using ery small (0.16) and very large (0.50) variance results in degradation of the results. We can also observe that
for datasets with more modes (2D grid), higher number of components improved the results. This suggests that using more
components can help samples spread more in the data spaces where more modes are available.

1.2. Grid search plots

We visualize the component assignments in each gaussian during the training for real and fake embeddings. The X axis,
represents the epochs and the Y axis represents the components. Each color in every column shows a different Gaussian
component and the width of each color in every column demonstrate the percentage of the embeddings assigned to that
gaussian component after one whole epoch. In addition to the component assignments, the probability landscape and the
generated samples are also provided for the 2D grid dataset, using 3 different variances of 0.5 in Table 11, 0.25 in Table 12
and variance of 0.16 in Table 13.

1.3. Relation to other GANs

In this section, we review the provided solutions for mode collapse and explain the relation to other GANs that provide
solutions for mode collapse.

1.3.1 Auto-encoding for mode discovery

Several GANs including VEEGAN [7] and ALI [2] use an auto-encoding technique as a stabaliser and a method for better
mode discovery. Although the authors report better mode discovery properties compared to vanilla GAN, their method
require substantially larger number of parameters caused by the additional auto-encoding operations. MD-GAN does not use
any auto-encoding or additional networks. We empirically showed that using a single discriminator, and apply the clustering
in the discriminator embedding results in significantly better mode discovery properties (discovering more modes, more high
quality samples) in various cases.

1.3.2 Additional optimisation steps

Unrolled GAN [5] proposes to computed several update steps in the generator and use it in the gradient computation of the
generator. This way, the generator predicts the future steps of the discriminator and can create better samples resulting in
discovering more modes. This solution is computationally very expensive as for each updates in the generator, several updates



(a) Stacked-MNIST. (b) Ring 2D. (c) Grid 2D.

(d) MNIST. (e) Fashion-MNIST (f) CIFAR-10. (g) CelebA.

Figure 1: Examples of real samples.

of the discriminator (as reported by the authors, 5 updates) have to be computed. MD-GAN does not compute any additional
updates, and for every update in the generator, only one update in the discriminator is computed. We also empirically showed
that MD-GAN can achieve significantly better mode discovery results compared to Unrolled GAN on several datasets, despite
being computationally more efficient.

Table 1: The results of the hyper-parameter grid search for MD-GAN on 2D ring dataset. Every experiment is repeated 5
times.

var=0.5 var=0.25 var=0.16
ngmm modes % hq modes %hq modes %hq

(8) (8) (8)
4 8.00±0.00 90.85±0.75 7.20±0.40 74.26±9.73 8.00±0.00 89.82±1.32
6 8.00±0.00 92.67±1.9 7.80±0.40 67.71±12.54 8.00±0.00 91.3±1.15
8 8.00±0.00 91.81±2.67 8.00±0.00 95.82±3.71 8.00±0.00 83.52±4.72

10 8.00±0.00 96.48±3.6 8.00±0.00 89.03±3.70 8.00±0.00 93.56±1.13
12 8.00±0.00 95.77±2.04 7.20±0.40 78.87±9.82 6.4±0.80 90.256±2.19

2. Network Architectures
The architectures used for experiments in this paper. Architectures used for MNIST and Fashion-MNIST are provided in

Table 5. Architectures used for CIFAR-10 experiments can be found in Table 6 and architectures of CelebA experiments are
detailed in Table 7. Architectures of Stacked-MNIST are provided in Table 9 and Table 8. And finally, architectures of Grid
2d and Ring 2D are explained in Table 10.

Scaled Sigmoid is the sigmoid non-linearity with scaled output in [-2.5,2.5]. This choice is based on the limits of our
Simplex means which are in the same range.

3. Datasets samples
Samples of real data from all datasets used are provided in Figure 1.



Table 2: The results of the hyper-parameter grid search for MD-GAN on 2D grid dataset. Every experiment is repeated 5
times.

var=0.5 var=0.25 var=0.16
ngmm modes % hq modes %hq modes %hq

(25) (25) (25)
4 22.67±1.89 67.67±1.94 24.00±0.00 77.55±9.43 16.67±11.79 56.75±40.13
6 25.00±0.00 93.31±0.66 25.00±0.00 87.84±2.55 24.33±0.47 79.81±5.51
8 24.67±0.47 92.04±3.05 25.00±0.00 88.53±5.41 23.67±1.89 76.79±19.14

10 25.00±0.00 93.84±0.00 25.00±0.00 99.36±2.28 24.00±1.41 93.96±0.17
12 25.00±0.00 89.11±5.36 25.00±0.00 93.87±2.28 25.00±0.00 89.21±0.30

Table 3: Hyperparameters used in our mode-collapse experiments on SMNIST dataset after tuning for each model separately.
All weights are initialized with N (0,

√
1e−3). BS: batchsize. Uni.: Uniform. Norm: Normal. NS: Non-Saturating loss [3].

MI: Mutual Information. NCat: dimensionality of categorical (compressible) noise. Sig.: variance penalty. λ: weight for
variance penalty. NG: number of Gaussian components (number of Gaussian components in DeliGAN equals the batchsize.).
MD: our proposed Mixture Density loss.

method arch. lr D lr G BS loss other D run G run z dim z dist
SpNorm [6] S 1

2
1.5e−4 5e−5 64 hinge — 2 1 256 Uni.

InfoGAN [1] S 1
2

1.5e−4 5e−5 64 NS+MI NCat=156 1 1 100 Uni.
Deli [4] S 1

2
4e−5 3e−5 100 NS+Sig. NG=100,λ = 0.05 1 1 256 Norm.

MD-GAN S 1
2

1.5e−4 5e−5 64 MD — 1 1 256 Uni.
SpNorm [6] S 1

4
1.5e−4 5e−5 64 hinge — 2 1 256 Uni.

InfoGAN [1] S 1
4

5e−5 5e−5 64 NS+MI NCat=156 1 1 100 Uni.
Deli [4] S 1

4
4e−5 3e−5 100 NS+Sig. NG=100,λ = 0.05 1 1 256 Norm.

MD-GAN S 1
4

1.5e−4 5e−5 64 MD — 1 1 256 Uni.

Table 4: Hyperparameters used in our mode-collapse experiments on 2D datasets after tuning for each model separately. All
weights are initialized with N (0, 0.02). BS: batchsize. Uni.: Uniform. Norm: Normal. NS: Non-Saturating loss [3]. MI:
Mutual Information. NCat: dimensionality of categorical (compressible) noise. Sig.: variance penalty. λ: weight for variance
penalty. NG: number of Gaussian components. MD: our proposed Mixture Density loss.

method lr D lr G BS loss other D run G run z dim z dist
SpNorm [6] 1e−3 1e−3 500 hinge — 1 1 2 Uni.
InfoGAN [1] 1e−3 1e−3 500 NS+MI NCat=2 1 1 2 Uni.
Deli [4] 1e−3 1e−3 500 NS+Sig. NG=500,λ = 0.05 1 1 2 Norm.
MD-GAN 1e−3 1e−3 500 MD — 1 1 2 Uni.

Table 5: The architectures used in MD-GAN for MNIST and Fashion-MNIST experiments. The dimensionality of the
simplex is d.

Discriminator
Input 1× 28× 28 gray-scale

Conv (64, 4× 4, stride=2, LReLu)
Conv (128, 4× 4, stride=2, LReLu) + BN

FC (128, LReLu) + BN
FC (d , ScaledSigmoid(-2.5,2.5))

Generator
Input 1× 100

FC (1024, ReLu) + BN
FC (7× 7× 128, ReLu) + BN

UpConv( 64, 4× 4,stride=2,RELU)+ BN
UpConv( 1, 4× 4,tanh)

References
[1] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan: Interpretable representation learning

by information maximizing generative adversarial nets. In Advances in Neural Information Processing Systems, 2016. 3



Table 6: The architectures used in MD-GAN for CIFAR-10 experiments. The dimensionality of the simplex is d.

Discriminator
Input 3× 32× 32 RGB

Conv (64, 4× 4, stride=2, LReLu)
Conv (128, 4× 4, stride=2, LReLu) + BN
Conv (256, 4× 4, stride=2, LReLu) + BN

FC (128, LReLu) + BN
FC (d , ScaledSigmoid(-2.5,2.5))

Generator
Input 1× 100

FC (2× 2× 448, ReLu)+BN
UpConv( 256, 4× 4,stride=2,RELU)+ BN

UpConv( 128, 4× 4,stride=2,RELU)
UpConv( 64, 4× 4,stride=2,RELU)

UpConv( 3, 4× 4,tanh)

Table 7: The architectures used in MD-GAN for CelebA experiments. The dimensionality of the simplex is d.

Discriminator
Input 3× 64× 64 RGB

Conv (64, 4× 4, stride=2, LReLu)
Conv (128, 4× 4, stride=2, LReLu) + BN
Conv (256, 4× 4, stride=2, LReLu) + BN

FC (128, LReLu) + BN
FC (d , ScaledSigmoid(-2.5,2.5))

Generator
Input 1× 100

FC (4× 4× 128, ReLu)+BN
UpConv( 256, 4× 4,stride=2,ReLu)+ BN

UpConv( 128, 4× 4,stride=2,ReLu)
UpConv( 64, 4× 4,stride=2,ReLu)

UpConv( 3, 4× 4,tanh)

Table 8: The architecture B used in MD-GAN for Stacked-MNIST. The dimensionality of the simplex is d.

Discriminator
Input 3× 28× 28 gray-scale

Conv (64, 4× 4, stride=2, LReLu)
Conv (128, 4× 4, stride=2, LReLu) + BN
Conv (256, 4× 4, stride=2, LReLu) + BN

FC (d , ScaledSigmoid(-2.5,2.5))

Generator
Input 1× 256

FC (7× 7× 128, ReLu) + BN
UpConv( 256, 4× 4,stride=2,ReLu)+ BN

UpConv( 128, 4× 4,stride=2,ReLu)
UpConv( 64, 4× 4,stride=1,ReLu)
UpConv( 3, 4× 4,stride=1,tanh)

Table 9: The architecture SX used in MD-GAN for Stacked-MNIST. The dimensionality of the simplex is d. X is the amount
of parameter reduction ( 12 or 1

4 ).

Discriminator
Input 3× 28× 28 gray-scale

Conv (64×X , 3× 4, stride=2, LReLu)
Conv (128×X , 4× 3, stride=2, LReLu) + BN
Conv (256×X , 4× 3, stride=2, LReLu) + BN

FC (d , ScaledSigmoid(-2.5,2.5))

Generator
Input 1× 256

FC (4× 4× 512×X , ReLu) + BN
UpConv( 256×X , 4× 4,stride=2,RELU)+ BN
UpConv( 128×X , 4× 4,stride=2,RELU)+ BN
UpConv( 64×X , 4× 4,stride=2,RELU)+ BN

UpConv( 3, 4× 4,tanh)

Table 10: The architectures used in MD-GAN for synthetic data experiments. The dimensionality of the simplex is d. The
discriminator’s output and dimensionality is changed to the ones used in their original paper.

Discriminator
Input 2

FC(128)-LReLU
FC(128)-LReLU

FC(d)-ScaledSigmoid(-2.5,2.5)

Generator
Input 2

FC(128)-ReLU
FC(128)-ReLU

FC(2)-ScaledTanh(-6,6)

[2] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, and Aaron Courville. Adversar-
ially learned inference. arXiv preprint arXiv:1606.00704, 2016. 1



Table 11: Real and fake cluster assignments, probability landscape and generated samples in MD-GAN for grid-2D with
different number of components (# in first column) and Variance of 0.5.

# Real cluster assignments Fake cluster assignments Probability landscape Generated samples

4

6

8

10

12

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Advances in neural information processing systems, 2014. 3

[4] Swaminathan Gurumurthy, Ravi Kiran Sarvadevabhatla, and R Venkatesh Babu. Deligan: Generative adversarial networks for diverse
and limited data. In IEEE Conference on Computer Vision and Pattern Recognition, 2017. 3

[5] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial networks. International Conference
on Learning Representations, 2017. 1

[6] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks.
International Conference on Learning Representations, 2018. 3

[7] Akash Srivastava, Lazar Valkoz, Chris Russell, Michael U Gutmann, and Charles Sutton. VEEGAN: Reducing mode collapse in gans
using implicit variational learning. In Advances in Neural Information Processing Systems, 2017. 1



Table 12: Real and fake cluster assignments, probability landscape and generated samples in MD-GAN for grid-2D with
different number of components (# in first column) and Variance of 0.25

# Real cluster assignments Fake cluster assignments Probability landscape Generated samples

4

6

8

10

12



Table 13: Real and fake cluster assignments, probability landscape and generated samples in MD-GAN for grid-2D with
different number of components (# in first column) and Variance of 0.16

# Real cluster assignments Fake cluster assignments Probability landscape Generated samples

4

6

8

10

12


