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A. Environment Details

In all experiments, we simulate a mobile base of the
Fetch robot. The Fetch robot receives visual observations
from a Primesense Carmine 1.09 short-range RGBD sen-
sor mounted on its head. Accordingly, we render images
of 640 × 480 resolution. To simulate the operation range
of the depth sensor, we only render depth values for points
that are within 5 meters from the camera. We also provide
a binary mask indicating which pixels have valid depth val-
ues and concatenate the mask with the depth image as its
second channel. We also add zero-mean Gaussian noise of
with a standard deviation of 0.05 meter to each pixel. The
segmentation mask uses the class labels from NYU40 [1]
with each pixel label encoded in the one-hot manner. We
subsample the rendered images by a factor of 10, providing
us RGB images of 64×48×3, depth images of 64×48×2
and segmentation masks of 64× 48× 40.

The environment dynamics is simulated for the Fetch
robot operating on a planar surface. The robot moves for-
ward and take turns by controlling the velocity of its two
wheels, with a wheel radius of 0.065 meters and axis width
of 0.375 meters. We add a zero-mean Gaussian with a stan-
dard deviation of 0.5 rad/s to both wheels to simulate the
noisy dynamics. We check the collisions between the robot
and the meshes of the environment. The robot will be reset
to the previous pose when it collides by taking the action.

B. Analysis of Memory Factorization

In memory factorization, it is crucial to choose represen-
tative centers that have a good coverage of all past obser-
vations. Therefore, the centers should be distant from each
other in the feature space. Since the memory keeps grow-
ing across time, the centers are supposed to be dynamically
updated during the task execution instead of remaining as
static vectors for all episodes.

In this section, we compare the farthest point sampling
(FPS) used in SMT with two alternative types of represen-
tative centers. We refer to Window as the baseline which
uses the last |M̃ | time steps in a fixed time window as rep-

Center Type Roaming Coverage Search

Window 378.0 451.6 438.7
Static 383.9 457.96 445.9
FPS 383.3 481.2 462.7

Table 1. Performance of using different types of representative
center in memory factorization. Average rewards are listed.

resentative centers. In this way, the centers are dynamically
updated but only focus on the most recent history. We also
implemented the static inducing points in [2], which we re-
fer to as Static. The |M̃ | inducing points are trained as
neural network weights and remain static during test time.
We compare the performance of the three types of centers
on the validation set by setting |M̃ | to be 100. As shown in
Table. 1, FPS achieves comparable task performance with
Static in the roaming task. And it outperforms the two base-
lines in coverage and search.

C. Robustness to Noisy Dynamics

In this section, we evaluate the robustness of our model
to noisy environment dynamics. Instead of retrieving the
ground truth poses pt from the environment, we estimate
the pose using the action at. at provides us translation and
rotation of the agent w.r.t. the previous pose. Thus we can
estimate the p̂t+1 at each time step using at and the previ-
ous estimation p̂t. When there is no noise, p̂t is equivalent
to pt. With the Gaussian noise added at each time step, the
noise added to p̂t will be a Gaussian process. Therefore,
when computing the observation embedding using the rela-
tive poses, recent steps suffer less from the noisy dynamics.

In our design of SMT, we use a positional embedding of
the time step similar to [3], but with exponential functions
instead of sinusoidal functions. The positional embedding
provides temporal information of each time step for the pol-
icy. Sinusoidal function is periodic and provides only rela-
tive temporal information. In contrast, the exponential func-
tion is monotonic and represents how recent each time step
is. In the long-horizon tasks we are interested in, we believe
relative temporal information is not sufficient for the agent
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Figure 1. Robustness to noisy dynamics. We compare three po-
sitional embedding methods under noisy environment dynamics.
The standard deviation of the noise is swept from 0.0 to 1.0.

to understand long-term dependencies.
To validate this assumption, we compare the exponential

embedding with the two baselines. No embedding does
not embed the positional embedding of the time step. Si-
nusoidal uses the same sinusoidal embedding function as
in [3]. We sweep the standard deviation of the noise from
0.0 to 1.0 and evaluates the average rewards on the valida-
tion set. In practice, we found the temporal information
not only improves the performance given clean observa-
tions, but also helps leverage the noisy environment dynam-
ics across time. As shown in Fig. 1, the average rewards
decrease with more noises in dynamics. Sinusoidal and ex-
ponential embeddings both mitigate the performance drop.
In the roaming task, the two embedding methods have com-
parable effects. While in coverage and search, exponential
embedding has the superior performance.

D. More Visualization

We present more visualization of the agent behaviors for
roaming in Fig. 2, for coverage in Fig. 3 and for search in
Fig. 4. As in the main paper, we visualize the trajecto-
ries from the top-down view as green curves, with white
and black dots indicating the starting and ending points.
Navigable area are masked in dark purple with red lines as
the collision boundaries. In the coverage task (Fig. 3), we

mark the covered cells in pink. In the search task (Fig. 4),
we mark target objects with yellow masks. These figures
demonstrate similar behaviors as analyzed in the main pa-
per. The same reactive and LSTM baselines as in the main
paper are used to compare with the proposed SMT policy.
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Reactive LSTM SMT (Ours)

Figure 2. Visualization of the agent behaviors in the Roaming Task.



Reactive LSTM SMT (Ours)

Figure 3. Visualization of the agent behaviors in the Coverage Task.



Reactive LSTM SMT (Ours)

Figure 4. Visualization of the agent behaviors in the Search Task.


