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A. Notation

A.1. Lp norm of a vector­valued function

We define the Lp norm of a vector-valued function f :
Ω ⊂ R

d → R
n with components {fi}

n
i=1 (i.e., f =

(f1, . . . , fn)
⊤) by

‖f‖Lp(Ω)
.
=

(∫

Ω

‖f(x)‖pdx

)1/p

, (19)

where ‖f(x)‖ = (
∑n

i=1 |fi(x)|
p)1/p is the p-norm in R

n.

With this convention,

‖f‖pLp(Ω) =

n∑

i=1

∫

Ω

|fi(x)|
pdx =

n∑

i=1

‖fi‖
p
Lp(Ω), (20)

that is, the p-th power of the norm of f is the sum of the p-th

power of the norms of its components.

The two most common cases are p = 1 and p = 2,

which, for the gradient of an image, ∇I = (Ix, Iy)
⊤, yield

simple expressions:

‖∇I‖L1(Ω) =

∫

Ω

(
|Ix(x)|+ |Iy(x)|

)
dx (21)

and

‖∇I‖2L2(Ω) =

∫

Ω

(
I2x(x) + I2y (x)

)
dx. (22)

A.2. Hessian Matrix

The Hessian matrix of a function, such as the IWE (used

in (7)), is denoted by

Hess(I) =

(
Ixx Ixy
Ixy Iyy

)

, (23)

where the subscripts indicate derivatives.

The trace of the Hessian matrix is the Laplacian, which

is used to define loss function (6).

B. Area of the Image of Warped Events

To measure the “thickness” of the edges of the IWE (e.g.,

Fig. 3a), one could count the number of pixels with count of

warped events above a threshold, e.g., one event. However,

this is brittle since it depends on this arbitrary threshold.

We propose to define the above-mentioned edge thickness

or “area” of an edge-like image like the IWE (3) in a more

sensible way as a weighted sum of the interior of the level

sets of the image, as we show next.

B.1. Definition of the Area of an Image

Using a Gaussian function (kernel) as a smooth approx-

imation to the Dirac delta, δ(x− µ) ≈ N (x;µ, σ2
Id), the

image of warped events (3) has, strictly speaking, an un-

bounded support (area of pixels with non-zero value). To

have a meaningful support measure, we instead count the

number of pixels with value greater than1 λ,

supp(I;λ)
.
=

∫

Ω

H(I(x) > λ) dx, (24)

where H(·) is the Heaviside function. Fig. 9 shows sev-

eral examples of it. This figure also illustrates the princi-

ple of area minimization, for a 1-D signal (3) with just two

warped events. As observed, the area or thickness of I is

minimized if the events are warped to the same location

(∆x
′ = 0 ⇐⇒ x

′
i = x

′
j), which is the desired event

alignment condition of corresponding events.

To have a support metric that does not depend on the

particular value of the threshold λ used (for fixed kernel

width σ), we sum (24) over all threshold values,

supp(I)
.
=

∫ ∞

0

ρ(λ) supp(I;λ) dλ, (25)

using a decreasing weighting function ρ, such as e−λ, thus

emphasizing the areas corresponding to λ ≈ 0 over those

associated to λ ≫ 0. In this way, an algorithm mini-

mizing (25) will focus its attention on decreasing the area

contribution of small thresholds, which are more important

since the areas of larger thresholds are smaller due to the

λ-support sets {x ∈ R
2 | I(x) > λ} forming a family of

nested subsets.

1We assume that I(x) ≥ 0 either because event polarity is not used

(bk = 1 in (3)) or because the support here defined is applied to images of

positive and negative events separately, and the results are added.
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Figure 9: Illustration of the “area” or support of a 1-D im-

age (3) with two events. The sum of the Gaussian kernels

centered on each warped event (in blue) produces I(x) (in

black), whose support (i.e., the set {x ∈ R | I(x) > λ =
0.2}) is displayed in solid red. The more aligned the events

(smaller ∆x = x′
2 − x′

1), the smaller the support of I(x).

Notice that it is not possible to use ρ = const since this

leads to supp(I) = Ne, which does not depend on the mo-

tion parameters θ we wish to optimize for. Using weighting

functions with unit area (i.e.,
∫∞
0

ρ(λ)dλ = 1) allows us

to interpret (25) as a convex combination of supports (24),

thus setting the correct scale so that (25) has the same units

as (24).
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(a) Warped events for θ1

0 10 20 30

0

10

20

30
0

0.2

0.4

0.6

0.8

1

(b) Support map for θ1
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(c) Warped events for θ∗
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(d) Support map for θ∗

Figure 10: Illustration of the area (26) of a patch/image

of warped events. Warped events I(x;θ) (left column)

and corresponding per-pixel support maps F (I(x;θ)/10)−
F (0) in (26) (right column), for two different motion pa-

rameters θ (top: θ1 ≡ suboptimal; bottom: θ2 ≡ θ∗ op-

timal). Support scores (26): supp(I) = 0.72 |Ω| (top) and

supp(I) = 0.65 |Ω| (bottom), with |Ω| = 312 = 961 pix-

els. The bottom patch has a smaller area (i.e., thinner edges)

than the top patch, thus showing a better event alignment.

B.2. Simplification of the Area of an Image

Substituting (24) in (25) and swapping the order of inte-

gration gives

supp(I) =

∫

Ω

∫ ∞

0

ρ(λ)H(I(x) > λ) dλ dx

=

∫

Ω

∫ I(x)

0

ρ(λ) dλ dx

=

∫

Ω

[F (λ)]
I(x)
0 dx

=

∫

Ω

(
F (I(x))− F (0)

)
dx, (26)

where F (λ)
.
=
∫
ρ(λ)dλ is a primitive of ρ, and F (0)

is constant. This is an advantageous expression compared

to (25), since it states that supp(I) can be computed using

the values of I(x) directly, without having to compute (24)

for every threshold λ and then sum up the results. By us-

ing a continuous image formulation, we have analytically

integrated the partial sums (24).

Fig. 10 illustrates (26). It shows the warped events



I(x;θ) on a 31 × 31 image patch for two different pa-

rameters θ1,θ2 (depth values, in this example [35]). It

also shows the corresponding integrands of (26), or “per-

pixel support maps” F (I(x;θ)/λ0) − F (0) ≡ 1 −
exp(−(I(x;θ)/λ0)), with λ0 = 10 warped events. Pixels

with I(x) & λ0 events contribute more to the support (26)

than pixels with I(x) . λ0 events, as shown in the support

maps (right column of Fig. 10), which are color-coded from

blue (low contribution) to red (high contribution).

Basically, the red regions of the support maps approxi-

mately indicate the area of the IWE, whereas the blue re-

gions indicate the pixels where few warped events accumu-

late and therefore do not effectively contribute to the area

of the IWE. Clearly, the bottom patch has a smaller area

(i.e., thinner edges) than the top patch, as indicated by the

smaller area of the red regions. The image area (26) is used

to define the focus loss function (8).

C. Loss Function: Image Entropy

As anticipated in (12), event alignment may be achieved

by maximizing the entropy of the IWE, where

H (p(z))
.
= −

∫ ∞

−∞
p(z) log p(z)dz (27)

is Shannon’s (differential) entropy for a continuous random

variable whose density function (PDF) is p(z).
The PDF of an image is approximated by its histogram,

normalized to have unitary area. In a continuous formula-

tion, this is written as (see [56])

pI(z)
.
=

1

|Ω|

∫

Ω

δ (z − I(x;θ)) dx, (28)

using the Dirac delta. This equation intuitively says that

pI(z) is computed as a ratio of areas: the “number of pixels”

of the IWE with value z, divided by the total “number of

pixels”, |Ω| =
∫

Ω
dx = Np.

Substituting (28) into (27), the entropy of the IWE be-

comes

H (pI(z)) = −

∫ ∞

−∞
pI(z) log pI(z)dz

= −

∫ ∞

−∞

1

|Ω|

∫

Ω

δ(z − I(x))dx log pI(z)dz

= −
1

|Ω|

∫

Ω

(∫ ∞

−∞
δ(z − I(x)) log pI(z)dz

)

dx

= −
1

|Ω|

∫

Ω

log pI (I(x)) dx. (29)

Observe that the entropy is maximized by favoring large

values of log(1/pI(I(x))) over smaller ones. Since log is

concave, it means that large values of 1/pI(I(x)) are fa-

vored, i.e., small values of pI(I(x)) are favored. For a PDF

that is concentrated around I = 0 (large pI(0), as shown

on the last column of Fig. 2), favoring small density values

implies that they must be achieved away from I = 0, i.e.,

for large |I| values (which are caused by the aggregation

of aligned events). Thus, maximizing the entropy increases

the range of I(x), producing a higher contrast image.

D. Loss Function: Image Range

We measure the image range by means of the support of

its PDF (28),

supp(pI)
.
=

∫ ∞

0

ρ(λ) supp(pI(z);λ) dλ, (30)

where the weight function ρ(λ) ≥ 0 emphasizes the contri-

butions of small |λ| over those of large |λ|, according to the

typical shape of the PDF of the event image (concentrated

around λ = 0).

Mimicking the steps in Section B, Eq. (30) can be rewrit-

ten as

supp(pI) =

∫ ∞

−∞

∫ ∞

0

ρ(λ)H(pI(z) > λ) dλ dz

=

∫ ∞

−∞

∫ pI(z)

0

ρ(λ) dλ dz

=

∫ ∞

−∞
[F (λ)]

pI(z)
0 dz

=

∫ ∞

−∞

(
F (pI(z))− F (0)

)
dz, (31)

where F (λ) is a primitive of ρ(λ), and F (0) is constant.

The motion parameters are found by maximizing (31),

i.e., (13). The same weighting functions and primitives as

for the image area (Section 3.3) may be used (with even

symmetry if event polarity is used in the IWE (3)). This

approach is inspired by the maximization of the entropy of

the PDF of the image of warped events, as explained in Sec-

tion C.

E. Loss Function: Spatial Autocorrelation

E.1. Moran’s I Index

Moran’s I index (17) (or “serial correlation coeffi-

cient” [47]) is a measure of spatial autocorrelation, i.e., it

measures how similar is one object with respect to its neigh-

bors. It is a concept that applies to variables whose values

are known in unstructured grids (spatial units), in general

(see Fig. 11).

If the variable of interest z consists of the intensity val-

ues of an image, zi = I(xi), which is defined on a regular

(pixel) lattice {xi}, and the weights wij are shift-invariant

(they do not depend on the particular location of pixels i and

j, only on their relative spatial arrangement) and symmetric



Figure 11: Illustration of spatial autocorrelation by Moran’s

index. A negative index indicates dispersion, whereas a pos-

itive index indicates clustering. The IWE differs from the

figure above in the sense that its pixel values vary continu-

ously with respect to the warping parameters, i.e., they are

not fixed values that move around as in the figure. Image

courtesy of ArcGIS.com https://pro.arcgis.com/en/pro-app/

tool-reference/spatial-statistics/spatial-autocorrelation.htm

wij = wji, then it is possible to write Moran’s I index using

a convolution. In the formalism of continuous images z(x)
over a domain Ω, Moran’s I index becomes

Moran(z)
.
=

1

|Ω|

∫

Ω

zs(x) (zs(x) ∗ w̃(x)) dx, (32)

where the standardized image zs(x)
.
= (z(x) − z̄)/σz is

obtained by normalizing z with its mean z̄ and variance σ2
z

over Ω. The weights w̃(x) should produce, in the convolu-

tion zs(x)∗ w̃(x), a sum of the neighboring values of zs(x)
(excluding the central value at x). Thus, it is natural to con-

sider the weights from a Gaussian kernel Gσ(x) with a zero

at the origin:

w̃(x) =
Gσ(x)−Gσ(0)δ(x)

1−Gσ(0)
. (33)

The integrand of (32) is the local Moran’s I index, and

it is the element-wise product of the standardized variable

zs with a low-pass filtered version of itself. It is positive

if both zs and neighboring values zs(x) ∗ w̃(x) are higher

or lower than the mean; and it is negative if the value and

neighboring values are on opposite sides of the mean (one

higher, the other lower). Increasing event alignment corre-

sponds to favoring negative local Moran indices (dissimilar

IWE pixels next to each other), and therefore, a negative

(global) Moran’s I index.

E.2. Geary’s Contiguity Ratio

Geary’s contiguity ratio is a generalization of Von Neu-

mann’s ratio [50] of the mean square successive difference

(numerator of (18)) to the variance (denominator of (18)).

Geary’s contiguity ratio is non-negative, and its mean is 1

for random images. Values of C significantly lower than

1 demonstrate positive spatial autocorrelation (the variable

of interest is regarded as contiguous), while values signifi-

cantly higher than 1 illustrate negative autocorrelation.

In the formalism of continuous images, Geary’s contigu-

ity ratio can be written as

C(z) =
1

2

1

|Ω|

∫

Ω

c(x)dx, (34)

with local score efficiently computed using convolutions:

c(x)
.
= (zs(x))2 + (zs(x))2 ∗ w̃(x)− 2zs(x) (zs ∗ w̃)(x).

(35)

Notice that the last term in (35) also appears in Moran’s I

index (32). Thus, Geary’s C is inversely related to Moran’s

I, but they are not identical.

Homogeneous regions of an image z(x) have a positive

spatial autocorrelation, indicated by c(x) < 1. The re-

gions with large values of (35), i.e., negative spatial auto-

correlation, are those corresponding to the edges of the ob-

jects (dissimilar intensity values on each side of the edge).

Thus, Geary’s local statistic (35) acts as an edge detector

(see Figs. 13 or 15).

F. Loss Function: Aggregation of Local Statis-

tics

Similarly to (14), aggregating other local statistics of the

IWE also yield focus measures. For example, the aggrega-

tion of the local mean absolute deviation (ALMAD),

ALMAD(I)
.
=

∫

Ω

MAD(x; I)dx, (36)

with

MAD(x; I)
.
=

1

|B(x)|

∫

B(x)

|I(u;θ)− µ(x; I)|du, (37)

is closely related to (14) since both aggregate local mea-

sures that are edge-detectors of I ((15) uses the the L2 norm,

whereas (37) uses the L1 norm). Using a weighted neigh-

borhood (e.g., Gaussian kernel Gσ), (37) can be efficiently

approximated by the formula with two convolutions:

MAD(x; I) ≈
∣
∣I(x)−

(
I(x) ∗Gσ(x)

)∣
∣ ∗Gσ(x), (38)

where the inner convolution approximates the local mean,

µ(x; I) ≈ I(x)∗Gσ(x), and the outer convolution averages

the magnitude of the local, centered IWE (integrand of (37))

over the neighborhood around x.

Omitting the local mean in (15) and (37) leads to local

versions of the MS and the MAV, respectively. These op-

erators, however, are not edge detectors; nevertheless, they

also work as focus loss functions since the images on which

they are applied, the IWEs, are edge-like images (the events

are brightness changes, i.e., they are related to the temporal

derivative of the brightness signal). Similarly to the (global)

MAV, the local MAV does not provide enough information

to estimate the warp parameters θ if polarity is not used (as

indicated in Table 2).

https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/spatial-autocorrelation.htm
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/spatial-autocorrelation.htm


G. Plots of the Local Loss Maps

Most of the loss functions considered can be written as

integrals over the IWE domain. Figs. 12, 13, 14 and 15 vi-

sualize the integrands (i.e., “local loss”) of most focus loss

functions, for two scenes: dynamic and boxes from the

dataset [45]. Images are given in pairs (with a common

caption below the images): local loss before optimization

(without motion compensation, on the left), and after opti-

mization of the corresponding focus loss function (motion-

compensated, on the right). Each image pair shares the

same color scale for proper visualization of how the local

loss changes before and after optimization. For reference,

since the local loss are transformations of the IWE, Figs. 12

and 14 also provide, on the top right, the IWE before and

after optimization with one of the loss functions (the vari-

ance).

The local loss of area-based loss functions is the support

map, as in Figs. 3b and 10. The focus loss given by the

IWE range (13) is not expressed as an integral over the im-

age domain, therefore, no image integrand is visualized in

the above-mentioned figures. MAV and local MAV are not

displayed either since they cannot be optimized with respect

to the parameters.

Notice that all local loss maps are represented using the

same color scheme, from blue (small) to large (yellow). For

objective functions formulated as maximization problems

(variance, gradient magnitude, etc.), visually good maps

are those that are almost “blue” for IWEs with bad event-

alignment parameters, and that clearly show “yellow” re-

gions where events align (due to good parameters θ). For

objective functions formulated as minimization problems

(e.g., area-based, loss based on the mean timestamp per

pixel), the situation is the opposite: good local loss maps

become less yellowish and more blueish as event alignment

improves due to good parameters θ.

H. Additional Experiments on Accuracy Eval-

uation

Tables 3 and 4 provide further quantitative evaluations of

the considered focus loss functions. Results correspond to

the boxes and poster sequences in [45], undergoing a ro-

tational motion with velocities close to 1000 ◦/s. Looking

at the RMS errors, these are small compared to the excur-

sion of the signal. The RMS columns of these tables are

summarized in Table 2.

I. Additional Plots of Focus Loss Functions in

Optical Flow Space

Figs. 16 and 17 present experiments with events in

a small space-time window (31 × 31 pixels and ∆t =
200ms), yielding approximately 2000 events, from a se-

quence of the dataset [45]. The goal of these figures is to

visualize the “shape” or “signature” of the focus loss func-

tions (as heat maps, pseudo-colored from blue to red).

The top-left image shows the patch on the intensity

frame (not used) corresponding to the space-time window

of events, highlighted in yellow, and three candidate flow

vectors {θi}
2
i=0 (marked with red, blue and green arrows,

respectively). The ground truth flow is close to θ2 =
(−40, 0)pixel/s. The top row also shows the warped events

(IWE patch) using the three flow vectors, without polarity in

the IWE (Fig. 16) or with polarity (Fig. 17). The remaining

rows show the focus loss functions in optical flow space,

with ±60 pixel/second around θ2. Some focus functions

are designed to be maximized (and therefore should present

a local maximum at θ2), while others are designed to be

minimized (and should present a local minimum at θ2).

Without Polarity. Rows 2 and 3 of the figures show the

variance, MS, MAD, MAV and their aggregation of local

versions. They are all visualized in the range [0, 1], by di-

viding by the maximum value of the focus function. With-

out using polarity (Fig. 16), the variance presents a nice

peak at the correct optical flow θ2, the peaks of the MS

and MAD functions are not as pronounced, and the MAV

function does not have the maximum at the ground truth

location (we explained that, without polarity, the MAV can-

not be used to estimate θ). The local versions (third row of

Fig. 16) are slightly narrower than the global versions. The

fourth row presents the four area-based focus losses (Sec-

tion B), whose goal is to be minimized, and indeed, they

present a local minimum at θ2. There are not big differ-

ences in these four area-based losses. The fifth row shows

more statistics-based losses. The range and Geary’s C show

a local maximum at the correct flow. Moran’s index shows

a local minimum, as expected, at the correct flow. The en-

tropy, without using polarity, does not have a local maxi-

mum at the correct flow. Instead, using polarity (Fig. 17),

it does have a local maximum at θ2. The last two rows of

Figs. 16 and 17 show focus loss functions based on the IWE

derivatives and their variances (composite losses). They all

present a clear peak at the correct depth (as the case of the

variance and local variance); some of them are more narrow

than others (all are visualized in the range [0, 1], for ease of

comparison). The gradient magnitude (based on Sobel op-

erator), the DoG magnitude and the LoG magnitude seem

to be the smoothest of these two rows.

With Polarity. Fig. 17 shows the results on the same ex-

periment as Fig. 16, but using event polarity in the IWE.

In a scene with approximately equal number of dark-to-

bright and bright-to-dark transitions, the number of posi-

tive and negative events is approximately balanced, and so,

the mean of the IWE is approximately zero. Thus, in this



Focus Loss Function Without polarity With polarity

ωx ωy ωz µ σ RMS ωx ωy ωz µ σ RMS

Variance (4) [33, 35] 15.69 19.53 20.34 -0.31 18.42 18.52 16.03 19.67 21.12 -0.64 18.78 18.94

Mean Square (9) [33, 36] 16.05 20.03 23.70 -0.49 19.83 19.93 16.04 19.67 21.36 -0.57 18.86 19.02

Mean Absolute Deviation (10) 15.40 18.99 23.99 -0.49 19.40 19.46 15.93 19.15 23.67 -0.57 19.40 19.58

Mean Absolute Value (11) - - - - - - 15.95 19.16 24.22 -0.61 19.60 19.77

Entropy (12) 19.29 21.73 44.48 0.03 28.14 28.50 18.03 20.50 41.10 -0.20 26.19 26.54

Area (8) (Exp) 19.70 21.57 53.23 0.10 31.41 31.50 15.89 19.12 23.60 -0.27 19.39 19.54

Area (8) (Gaussian) 18.12 20.20 39.22 0.10 25.78 25.85 15.67 18.77 22.11 -0.33 18.69 18.85

Area (8) (Lorentzian) 20.56 21.69 55.04 0.42 32.30 32.43 15.48 19.36 28.11 -0.02 20.85 20.98

Area (8) (Hyperbolic) 18.71 20.67 47.99 0.07 29.05 29.13 15.69 18.90 22.86 -0.27 18.99 19.15

Range (13) (Exp) 18.68 22.72 44.59 0.39 28.16 28.66 17.29 19.38 49.50 -0.48 28.23 28.72

Local Variance (14) 16.17 19.55 18.90 -0.41 17.94 18.21 16.04 19.55 19.61 -0.21 18.15 18.40

Local Mean Square 18.37 21.42 34.65 0.59 24.31 24.81 16.68 20.21 22.67 -0.05 19.53 19.86

Local Mean Absolute Deviation 16.36 19.39 28.35 -0.35 21.10 21.37 15.78 19.06 21.37 -0.20 18.47 18.74

Local Mean Absolute Value - - - - - - 18.13 20.17 34.00 -0.42 23.61 24.10

Moran’s Index (17) 17.87 20.74 34.24 -0.99 23.87 24.28 16.97 20.01 33.31 -0.08 23.18 23.43

Geary’s Contiguity Ratio (18) 17.48 20.21 33.93 -0.58 23.50 23.87 16.00 19.42 23.07 0.04 19.25 19.50

Gradient Magnitude (5) 16.12 19.53 17.84 -0.71 17.58 17.83 15.90 19.46 18.93 -0.79 17.91 18.10

Laplacian Magnitude (6) 15.63 20.92 18.42 -0.01 18.09 18.32 14.52 19.93 18.28 0.03 17.36 17.58

Hessian Magnitude (7) 16.26 19.69 19.29 -0.22 18.14 18.41 15.89 19.43 18.46 -0.30 17.70 17.93

Difference of Gaussians (DoG) 14.79 20.22 27.54 0.66 20.50 20.85 14.99 20.52 22.25 0.43 18.92 19.25

Laplacian of the Gaussian (LoG) 14.64 20.45 26.00 0.50 20.09 20.36 14.42 20.09 18.80 0.47 17.49 17.77

Variance of Laplacian 16.30 19.70 18.78 -0.45 18.02 18.26 15.95 19.45 18.71 -0.32 17.81 18.01

Variance of Gradient 16.26 19.71 20.11 -0.00 18.49 18.69 16.10 19.75 21.39 0.31 18.84 19.08

Variance of Squared Gradient 16.50 20.02 19.64 -0.10 18.46 18.72 16.22 20.08 20.56 0.06 18.72 18.95

Mean Timestamp on Pixel [37] 42.48 39.40 166.81 0.54 82.87 82.89 - - - - - -

Table 3: Accuracy and Timing Comparison of Focus Loss Functions. Angular velocity errors (in deg /s) of the motion

compensation method [35] (with or without polarity) with respect to motion-capture system. The six columns per case

are the errors in each component of the angular velocity and their mean, standard deviation and RMS values. Processing

Ne = 30 000 events, warped onto an image of 240 × 180 pixels (DAVIS camera [52]). Sequence: boxes rotation from

the Event Camera Dataset [45]. Best value per column is in bold.

case, the MS is approximately equal to the variance, and

the MAV approximates the MAD. This is noticeable in the

second row of Fig. 17. A similar trend is observe in the

local versions of the four above statistics, albeit the local

variance and MAD present narrower peaks than the local

MS and MAV, respectively. The area-based focus functions

are computed by splitting the events according to polarity,

computing the areas of the two resulting IWEs and adding

their area values. The corresponding plots, in the fourth

row of Fig. 17 are similar to those without polarity (Fig. 16,

except for the vertical scale). The entropy and range im-

prove if event polarity is used, basically because the PDF

becomes double-sided and it allows us to distinguish pos-

itive and negative IWE edges/values. Moran’s index and

Geary’s C ratio are not good focus losses if polarity is used,

since they present brittle local minimum/maximum, respec-

tively. The derivative-based losses present a clear peak at

the correct flow, and slightly more pronounced than their

counterparts in Fig. 16.

J. Additional Plots on Depth Estimation

Fig. 18 shows in more detail Fig. 6: depth estimation

for a patch from a sequence of the dataset [45]. The se-

quence was recorded with a DAVIS camera [52], camera

poses were recorded by a motion-capture system, and the

camera was calibrated, so the only unknown is the scene

structure (i.e., depth). Fig. 18b shows how the values of

the focus functions vary with respect to the depth parame-

ter θ ≡ Z, for the events corresponding to the patch high-

lighted in Fig. 18a. Remarkably, the focus curves have a

smooth variation, with a clear extrema around the correct

depth value. Fig. 18a shows the warped events (IWE) for a

depth Z = 1.11m, close to the peaks of the focus curves.

The IWE is pseudo-colored, from few event count (blue) to

large event count (red). It shows that the events produce

a sharp image at the patch location, whereas other parts of

the image are “out of focus” since events do not align at that

depth [15,35]. Clearly, some focus curves are narrower than

others (Fig. 18b), showing better properties for determining

the optimal depth location. We observe that the entropy and



Focus Loss Function Without polarity With polarity

ωx ωy ωz µ σ RMS ωx ωy ωz µ σ RMS

Variance (4) [33, 35] 26.67 20.24 30.95 0.45 25.93 25.96 26.50 19.86 26.80 -0.20 24.36 24.39

Mean Square (9) [33, 36] 28.44 25.89 47.97 3.70 33.43 34.10 26.90 21.23 30.79 1.19 26.14 26.31

Mean Absolute Deviation (10) 27.25 22.16 42.66 1.25 30.43 30.70 27.11 21.73 40.03 1.71 29.40 29.62

Mean Absolute Value (11) - - - - - - 27.18 22.19 40.33 2.18 29.65 29.90

Entropy (12) 32.81 41.12 68.70 3.63 46.98 47.54 27.65 22.73 49.27 2.36 32.98 33.21

Area (8) (Exp) 33.12 22.50 73.75 -0.73 42.94 43.12 26.31 19.53 33.36 -0.42 26.36 26.40

Area (8) (Gaussian) 28.40 21.07 54.02 -0.59 34.36 34.50 26.15 19.20 30.70 -0.41 25.31 25.35

Area (8) (Lorentzian) 28.51 21.69 57.41 -0.92 35.71 35.86 26.30 19.63 33.77 -0.59 26.52 26.57

Area (8) (Hyperbolic) 27.39 20.65 50.78 -0.84 32.82 32.94 26.27 19.35 32.01 -0.41 25.84 25.88

Range (13) (Exp) 32.18 37.73 61.70 3.44 43.32 43.87 24.48 19.53 45.99 1.56 29.86 30.00

Local Variance (14) 26.95 20.49 28.87 1.11 25.34 25.44 26.48 20.32 25.66 0.88 24.06 24.15

Local Mean Square 28.47 25.58 47.79 3.79 33.28 33.95 26.74 21.25 31.41 1.26 26.30 26.47

Local Mean Absolute Deviation 47.61 53.19 84.85 4.55 61.67 61.89 26.42 20.03 29.41 0.95 25.22 25.29

Local Mean Absolute Value - - - - - - 27.19 22.34 41.57 2.22 30.10 30.37

Moran’s Index (17) 28.32 21.57 47.31 1.39 32.32 32.40 27.70 20.99 44.18 1.32 30.90 30.96

Geary’s Contiguity Ratio (18) 27.63 20.78 31.44 0.89 26.56 26.61 26.52 20.25 28.90 1.19 25.15 25.23

Gradient Magnitude (5) 26.61 20.50 24.69 0.61 23.85 23.93 26.34 20.01 24.40 -0.20 23.54 23.58

Laplacian Magnitude (6) 27.24 20.74 26.76 0.64 24.85 24.91 26.29 20.25 24.46 0.61 23.60 23.67

Hessian Magnitude (7) 27.20 22.40 26.81 0.95 25.39 25.47 26.36 20.24 24.61 0.80 23.66 23.74

Difference of Gaussians (DoG) 24.51 18.01 30.97 1.45 24.41 24.50 24.29 17.85 24.30 0.75 22.10 22.15

Laplacian of the Gaussian (LoG) 24.66 17.96 32.85 1.27 25.10 25.15 24.20 17.78 30.04 1.30 23.94 24.01

Variance of Laplacian 26.85 27.84 25.10 0.77 26.52 26.59 26.26 20.23 24.38 0.53 23.56 23.62

Variance of Gradient 26.85 27.84 25.10 0.77 26.52 26.60 26.63 20.29 25.44 0.96 24.12 24.22

Variance of Squared Gradient 26.80 21.14 30.36 1.29 25.97 26.10 26.72 20.94 25.63 1.13 24.32 24.43

Mean Timestamp on Pixel [37] 64.94 87.19 211.4 0.94 121.1 121.2 - - - - - -

Table 4: Accuracy Comparison of Focus Loss Functions on the poster rotation sequence from dataset [45]. Angular

velocity errors (in deg /s) of the motion compensation method [35] (with or without polarity) with respect to motion-capture

system. The six columns per case are the errors in each component of the angular velocity and their mean, standard deviation

and RMS values. Processing Ne = 30 000 events, warped onto an image of 240× 180 pixels (DAVIS camera [52]). On each

column, the best value is highlighted in bold.

the range curves have wide peaks, and therefore do not de-

termine depth very precisely.

Semi-dense 3D Reconstruction. Fig. 19 shows depth es-

timation for every pixel of a reference view along the tra-

jectory of the event camera. For every pixel, we compute

focus curves, as those in Fig. 18b, and select the depth at

the peak. To capture fine spatial details, the focus functions

are computed on patches of 3 × 3 pixels in the reference

view, weighted by a Gaussian kernel to emphasize the con-

tribution of the center pixel. We also record the value of the

focus function at the peak for every pixel of the reference

view. These values are displayed as a “focus confidence

map” in Fig. 19. For better visualization, the focus values

are represented in negative form, from bright (low focus

value) to dark (high focus value). The confidence map is

used to select the pixels in the reference view with largest

focus, i.e., the pixels for which depth is most reliably esti-

mated. The above selection yields a semi-dense depth map,

which is displayed color coded, overlaid on the intensity

frame from the DAVIS camera [52] at the reference view.

We used adaptive thresholding [46, p.780] on the focus con-

fidence map, and a median filter to remove spike noise from

the depth map. As it is seen, depth is most reliably esti-

mated at strong brightness edges of the scene. Finally, the

depth map is also visualized as a point cloud, color-coded

according to depth (Fig. 19).

The figure compares some representative focus func-

tions. In general, we obtain good depth 3D reconstructions

with the methods tested. Some methods produce slightly

noisier 3D reconstructions than others, and some recover

more edges than others. This is due to both the shape of

the focus confidence maps and the adaptive thresholding

parameters. We observe that focus functions as simple as

the local mean square (MS) or the local mean absolute de-

viation (MAD) produce good results. These semi-dense 3D

reconstruction methods may be used as the mapping mod-

ule of an event-based visual odometry system, such as [23],

to enable camera pose estimation from the 3D reconstructed

scene.



Scene IWE before optimization IWE after optimizing (4)

Zero parameters Best parameters θ∗ Zero parameters Best parameters θ∗

Variance (4): |I(x)− µI |
2 MS (9): |I(x)|2

MAD (10): |I(x)− µI | Entropy (12) (29): − log pI(I(x))

Area (8) (Exponential): F (I(x)) Area (8) (Gaussian): F (I(x))

Area (8) (Lorentzian): F (I(x)) Area (8) (Hyperbolic): F (I(x))

Local Variance (16) Local MS: I2(x) ∗Gσ(x)

Figure 12: Visualization of the local loss (i.e., integrands of the Focus Loss Functions), pseudo-colored from blue (small)

to yellow (large). Same scene as in the top row of Fig. 2 (i.e., without using polarity). Images are given in pairs: local

loss before optimization (no motion compensation, Left), and after optimization of the corresponding focus loss function

(motion-compensated, Right). The local loss of area-based loss functions is the “support map”, as in Figs. 3b and 10.



Zero parameters Best parameters θ∗ Zero parameters Best parameters θ∗

Local MAD (38): |I(x)− (I(x) ∗Gσ(x))| ∗Gσ(x) (Local) Moran’s Index (17),(32): Is(x) (Is ∗ w̃)(x)

(Local) Geary’s C Contiguity Ratio (35) Gradient Magnitude (5): ‖∇I(x)‖2

Laplacian Magnitude (6) ‖∆I(x)‖2 Hessian Magnitude (7): ‖Hess(I(x))‖2

DoG: |(I ∗Gσ1
)(x)− (I ∗Gσ2

)(x)|2 LoG: |(I ∗Gσ)(x)− (I ∗G1.6σ)(x)|
2

Variance of Laplacian: |∆I(x)− µ∆I |
2 Variance of Gradient Magnitude: |‖∇I(x)‖ − µ‖∇I‖|

2

Variance of Squared Gradient Magnitude Variance of Mean Timestamp on Pixel [37]

Figure 13: Visualization of local scores (i.e., integrands) of the Focus Loss Functions (continuation).



Scene IWE before optimization IWE after optimizing (4)

Zero parameters Best parameters θ∗ Zero parameters Best parameters θ∗

Variance (4): |I(x)− µI |
2 MS (9): |I(x)|2

MAD (10): |I(x)− µI | Entropy (12) (29): − log pI(I(x))

Area (8) (Exponential): F (I(x)) Area (8) (Gaussian): F (I(x))

Area (8) (Lorentzian): F (I(x)) Area (8) (Hyperbolic): F (I(x))

Local Variance (16) Local MS: I2(x) ∗Gσ(x)

Figure 14: Visualization of the local loss (i.e., integrands of the Focus Loss Functions). Scene boxes, IWE not without using

polarity. Same notation as Fig. 12.



Zero parameters Best parameters� � Zero parameters Best parameters� �

Local MAD (38): jI (x ) � (I (x ) � G� (x )) j � G� (x ) (Local) Moran's Index (17), (32): I s (x ) ( I s � ~w)(x )

(Local) Geary'sC Contiguity Ratio (35) Gradient Magnitude (5): kr I (x )k2

Laplacian Magnitude (6) k� I (x )k2 Hessian Magnitude (7): kHess(I (x )) k2

DoG: j(I � G� 1 )( x ) � (I � G� 2 )( x )j2 LoG: j(I � G� )( x ) � (I � G1:6� )( x )j2

Variance of Laplacian:j� I (x ) � � � I j2 Variance of Gradient Magnitude:jkr I (x )k � � kr I k j2

Variance of Squared Gradient Magnitude Variance of Mean Timestamp on Pixel [37]

Figure 15: Visualization of local scores (i.e., integrands) of the Focus Loss Functions (continuation).






















