
FilterReg: Robust and Efficient Probabilistic Point-Set Registration using
Gaussian Filter and Twist Parameterization Supplemental Document

Wei Gao
Massachusetts Institute of Technology

weigao@mit.edu

Russ Tedrake
Massachusetts Institute of Technology

russt@mit.edu

Abstract

This supplemental document is organized as follows:

• Sec. 1 presents the complete derivation of the EM pro-
cedure of the proposed probabilistic model.

• Sec. 2 describes the technical details about the permu-
tohedral lattice filter for the E step.

• Sec. 3 describes the twist parameterization for the
node-graph [5] deformable kinematic model. The al-
gorithm details and GPU-implementation are also dis-
cussed.

• Sec. 4 reports the parameters ans setup for several ex-
periments.

1. Derivation of the EM procedure
Recall that we use X,Y to denote the two point sets,

x1, x2, ..xM and y1, y2, ..., yN are points in X and Y . The
point-set X is defined as the model that is controlled by
the motion parameter θ. Another point set Y is defined
as the observation. According to the paper, We assume the
following factorization schemes

p(X, θ|Y) ∝ φkinematic(X, θ)pgeometric(X|Y)

∝ φkinematic(X, θ)

M∏
i=1

pgeometric(xi|Y)
(1)

and the geometric distribution of each model point is

pgeometric(xi|Y) =

N+1∑
j=1

p(yj)p(xi|yj) (2)

where p(xi|yj) = N (xi; yj ,Σxyz) is the Probability Den-
sity Function (PDF) of Gaussian distribution, Σxyz =
diag(σ2

x, σ
2
y, σ

2
z) is the diagonal covariance matrix. An ad-

ditional uniform distribution p(xi|yN+1) = 1
M is added to

account for the noise and outliers. Similar to [8], we use
equal membership probabilities p(yj) = 1

N for all GMM
components, and introduce a parameter 0 ≤ w ≤ 1 to rep-
resent the weight of uniform outlier distribution. Thus, the
geometric distribution of each model point is

pgeometric(xi|Y) =
w

M
+ (1− w)

1

N

N∑
j=1

p(xi|yj) (3)

We use maximum likelihood estimation to estimate the
motion parameter θ and model geometric X . The log-
likelihood function that we want to maximize is

L = log(φkinematic(X, θ)) +

M∑
i=1

log(

N+1∑
j=1

p(yj)p(xi|yj))

(4)
This optimization has sum terms within the log function,

which is not easy to deal with. Thus, we use the EM [3]
algorithm to solve it. We introduce the latent indicator vari-
able Z, where zij ∈ {0, 1} represents whether model point
xi is responsible for observation point yj .

The EM algorithm exploits the following relationship,
while holds for an arbitrary distribution of the latent vari-
able q(Z):

log p(X, θ|Y) = Lq(X) +KL(q|p) + log(φkinematic(X, θ))

+ constant
(5)

where

Lq(X) =
∑
Z

q(Z)log(
pgeometric(X,Z|Y)

q(Z)
)

KL(q|p) = −
∑
Z

q(Z)log(
p(Z|X,Y)

q(Z)
)

(6)

here we have used the factorization in (1), and KL(q|p)
is the KL-divergence between q(Z) and p(Z|X,Y). The
abstract EM procedure is
E step:

q(Z)← p(Z|Xold, Y) (7)

1

M step: solve the following maximization problem with
respect to X and θ given q(Z) in the abstract E step (7)

Lq(X) + log(φkinematic(X, θ)) (8)

Following these procedures, the log-likelihood function
log p(X, θ|Y) is guaranteed not to decrease.

The posterior probability of the correspondence variable
zij can be computed as

p(zij = 1|X,Y) =
p(zij = 1, xi|Y)

p(xi|Y)

=
1−w
N N (xi|yj ,Σxyz)

1−w
N

∑N
k=1N (xi|yk,Σxyz) + w

M

=
N (xi|yj ,Σxyz)∑N

k=1N (xi|yk,Σxyz) + c
(9)

where c = w
1−w

N
M is a constant. The Lq(X) can be calcu-

lated as:

Lq(X) =
∑
Z

p(Z)log(p(X|Y, Z))

=
∑
Z

p(Z)log(
∏
i

∏
j

p(xi|yj , zij = 1)zij)

=
∑
Z

p(Z)
∑
i

∑
j

zij log(N (xi|yj ,Σxyz))

=
∑
i

∑
j

αij log(N (xi|yj ,Σxyz))

= −1

2

∑
i

∑
j

αij(xi − yj)TΣ−1xyz(xi − yj)

− log(|Σxyz|)
2

∑
i

∑
j

αij + constant

(10)

where αij = E(zij |X,Y) = p(zij = 1|X,Y). Note that Y
is fixed during registration, we have

∑
i

∑
j

αij(xi − yj)TΣ−1xyz(xi − yj)

=
∑
i

∑
j

αij(x
T
i Σ−1xyzxi − 2xTi Σ−1xyzyj) + constant

=
∑
i

((
∑
j

αij)(x
T
i Σ−1xyzxi)− 2xTi Σ−1xyz(

∑
j

αijyj))

+ constant
(11)

here the constant means they don’t depend onX . By insert-
ing αij = p(zij = 1|X,Y) and the posterior (9), we get the
concrete EM procedure

E step: For each xi, compute

M0
xi

=
∑
yk

N (xold
i |yk,Σxyz)

M1
xi

=
∑
yk

N (xold
i |yk,Σxyz)yk

(12)

M step: minimize the following objective function with
respect to X and θ using M0

xi
and M1

xi
from the E step (12)

− log(φkinematic(X, θ))

+
∑
xi

M0
xi

M0
xi

+ c
(xi −

M1
xi

M0
xi

)TΣ−1xyz(xi −
M1
xi

M0
xi

)
(13)

If the kinematic model encoded by φkinematic(X, θ) is
X = X(θ), the M step becomes

∑
xi

M0
xi

M0
xi

+ c
(xi(θ)−

M1
xi

M0
xi

)TΣ−1xyz(xi(θ)−
M1
xi

M0
xi

) (14)

1.1. Optimized Variance

In the derivation above, we assume the diagonal conva-
riance matrix Σxyz is a fixed parameter. Similar to [8], the
variance can be interpreted as a decision variable in (10).
Furthermore, if the Σxyz = diag(σ2, σ2, σ2), the optimiza-
tion with respect to Σxyz can be decoupled with the opti-
mization with respect to X and θ. The optimization with
respect X and θ to becomes,

minimize: − log(φkinematic(X, θ))

+
∑
xi

M0
xi

M0
xi

+ c
(xi −

M1
xi

M0
xi

)T (xi −
M1
xi

M0
xi

)

(15)
and the optimization with respect to σ becomes,

minimize:
1

2σ2

∑
i

∑
j

αij(xi − yj)T (xi − yj)

+
3

2
log(σ2)

∑
i

∑
j

αij

(16)

where the xi in (16) is obtained by solving (15). The op-
timization (16) can be solved analytically and the optimal
value of σ is

σ2 =

∑
i

∑
j αij(xi − yj)T (xi − yj)

3
∑
i

∑
j αij

= (Σi
M0
xi
xTi xi − 2xTi M

1
xi

+M2
xi

M0
xi

+ c
)/(Σi

M0
xi

M0
xi

+ c
)

(17)
where

M2
xi

=
∑
yk

N (xold
i |yk,Σxyz)yTk yk (18)

should be inserted into the E step (12).

Figure 1. An illustration of the permutohedral lattice filter [1].
Splat: The input features are interpolated to permutohedral lat-
tice using barycentric weights. Blur: lattice points exchange their
values with nearby lattice points. Slice: The filtered signal is in-
terpolated back onto the input signal.

2. Permutohedral Filter for the E step

We briefly summarize the filtering process of [1], an il-
lustration is shown in Fig. 1. In permutohedral filter [1],
the d-dimension feature f is first embedded in (d + 1)-
dimensional space, where the permutohedral lattice lives.
In the embedded space, each input value v Splats onto the
vertices of its enclosing simplex with barycentric weights.
Next, lattice points Blur their values with nearby lattice
points. Finally, the space is Sliced at each input position us-
ing the same barycentric weights to interpolate output val-
ues.

The permutohedral filter approximates the Gaussian fil-
ter with two barycentric filters (the Splat and Slice) and a
Gaussian filter on the lattice (the Blur). From the analysis
of [1], for filtering with d-dimension feature, the variance
of the barycentric filter is d(d + 1)2/12, and the variance
of the lattice point Gaussian filter is d(d+ 1)2/2. The total
variance is 2d(d + 1)2/3. As the feature is in d dimen-
sional feature space, the total variance on each dimension
is 2(d + 1)2/3. To approximate a Gaussian filter with unit

variance, the feature space should be scaled by
√

2
3 (d+ 1)

in the feature embedding stage.
As mentioned in the paper, the performance of the per-

mutohedral filter decreases along with the variance value.
To resolve it, we propose to omit the Blur stage if the rel-
ative variance is small. This approximation is less accu-
rate than the full pipeline for large variance, but it is suffi-
cient for point-set registration with small variance in prac-
tice. Additionally, the lattice index built without the Blur
stage doesn’t need rebuilding among EM iterations, as only
the Blur stage involves the model point X which will be
updated with motion parameter θ.

By omitting the Blur stage, we are approximating the
Gaussian filter with two barycentric filters, and the total
variance is d(d + 1)2/6. To approximate the Gaussian fil-
ter with unit variance on the normalized feature, we need
to scale the feature space by

√
1
6 (d + 1) in the feature em-

bedding stage. We approximately characterize the relative
value of variance Σf using the number of the lattice vertices

Figure 2. The time to build the index for the E step at differ-
ent variance values. The proposed approximation is more efficient
than the original permutohedral filter [1] if the variance is small.

and the size of the input cloud. Let Nlattice be the number of
lattice vertices, and Ncloud be the number of points in the
input point cloud. If the variance Σf is large, Nlattice would
be much smaller than Ncloud. On the contrary, Nlattice would
be comparable to Ncloud for small variance. Thus, we use
full pipeline if Nlattice < αNcloud, else we omit the Blur
stage. The value of α is determined empirically, we found
0.01 < α < 0.1 works well in practice and α = 0.015 is
used for all the presented numerical experiments.

We compare the performance of index building using the
original permutohedral filter and our approximation. The
time to build the index is shown in Fig. 2. Both the orig-
inal permutohedral filter and the proposed approximation
are tested on an outlier-corrupted bunny model with 10000
points. The diameter of the bunny model is about 10 [cm].
From Fig. 2, if the variance is small, the Blur stage domi-
nates the overall performance and the original permutohe-
dral filter is less efficient than our approximation.

3. Deformable Kinematic Model with Twist

In this section, we present the twist parameterization for
the node-graph deformable kinematic model. Recall that
the node graph is defined as a set {[pj ∈ R3, Tj ∈ SE(3)]},
where j is the node index, pj is the position of the jth node,
and Tj is the SE(3) defined on the jth node. Tj is rep-
resented by DualQuaternion [6] q̂j for better interpolation.
The motion parameter θ = [q̂1, q̂2, ..., q̂Nnode]. The kinematic
equation can be written as

Ti(θ) = normalized(Σk∈Ni(xi reference)wkiq̂k) (19)
whereNi(xi reference) is the nearest neighbor nodes of model
point xi, and wki is the skinning weight.

Similar to the case of the articulated registration, the
computation of the Amatrix for the node-graph deformable

kinematic can be factored as,

A =
∑

node-pairkl

(
∂ζk
∂θ

)T (
∑

xi in node-pairkl

wkiwli
∂residuali

∂ζi

T

∂residuali
∂ζi

)(
∂ζl
∂θ

)

(20)
where ζk and ζl are the twist of node k and l, and we have
exploited ∂ζi

∂ζk
= wkiI6×6. The Jacobian ∂ζk

∂θ is a blocked
matrix

∂ζk
∂θ

= [01, 02, ..., 0k−1, I6×6, 0k+1, ..., 0Nnode] (21)

where 0i is a 6× 6 matrix. Here we again parameterize the
change of θ with twists of nodes. The algorithm to compute
the A matrix is summarized in Algorithm 1.

We implement the Algorithm 1 on GPU with Nvidia
CUDA. To achieve it, an inverse index from node pairs to
model points is required. We use a GPU hash table to main-
tain this index, and the index is built by letting each model
point insert its connected node in parallel. With the index,
lines 1-4 of the Algorithm 1 can be easily implemented (in
parallel). As the A matrix is a block sparse matrix, we rep-
resent it using the block compressed row format (BCSR).
We first build the BCSR row index and column index using
the map from node pairs to model points. With the BCSR
column index, lines 5-7 of the Algorithm 1 can be imple-
mented by inserting JTJ twist kj to its corresponded blocks.

Algorithm 1 The A matrix for deformable kinematic
1: for all node-pairkj do . Parallelizable
2: JTJ twist kj = 06×6
3: for all point xi in node-pairkj do . Parallelizable

4: JTJ twist j += wkiwji
∂residuali
∂ζi

T ∂residuali
∂ζi

5: . A is stored as a block sparse matrix
6: A = 0Njoint×Njoint

7: for all node-pairkj do
8: . A[k, j] is the 6× 6 block at (k, j)
9: A[k, j] = A[j, k] = JTJ twist kj

4. Parameters for Experiments
In this section, we summarize the setup and parameters

for several experiments that is not presented in the main pa-
per.

4.1. Robustness Test on Synthetic Data

The setup and parameters for the presented method and
the baselines are:
CPD [8]: Our code is a C++ re-implementation of the orig-
inal author’s Matlab code. We modify it to enable a user-

defined initial variance σinit. We set the initial variance to
be σinit = 5 [cm] and the outlier ratio to be w = 0.3.
Proposed: For the proposed method with fixed variance,
we use σ = 2 [cm]. For the proposed method with updated
variance, we set σinit = 5 [cm]. For both variants of our
method, we set outlier ratio to be w = 0.3.
TrICP [2]: We modify the implementation of TrICP [2]
inside PCL [9], and the internal correspondence search is
performed by FLANN [7]. We hard-coded the correspon-
dence filter in PCL [9] to improve the performance. We use
truncated distance to be 5 [cm] and accept top 75% corre-
spondence pairs.

4.2. Rigid Registration on Real-World Data

For the setup and parameters of baseline methods, please
refer to [4]. For the proposed method with fixed variance,
we use σ = 8 [cm]. For the proposed method with updated
variance, we set σinit = 20 [cm]. For both variants of our
method, we use outlier ratio w = 0.1.

References
[1] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional

filtering using the permutohedral lattice. In Computer Graph-
ics Forum, volume 29, pages 753–762. Wiley Online Library,
2010. 3

[2] D. Chetverikov, D. Stepanov, and P. Krsek. Robust euclidean
alignment of 3d point sets: the trimmed iterative closest point
algorithm. Image and Vision Computing, 23(3):299–309,
2005. 4

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum like-
lihood from incomplete data via the em algorithm. Journal of
the royal statistical society. Series B (methodological), pages
1–38, 1977. 1

[4] B. Eckart, K. Kim, and J. Kautz. Fast and accurate point cloud
registration using trees of gaussian mixtures. arXiv preprint
arXiv:1807.02587, 2018. 4

[5] L. Kavan, S. Collins, C. OSullivan, and J. Zara. Dual quater-
nions for rigid transformation blending. 1

[6] L. Kavan, S. Collins, J. Žára, and C. O’Sullivan. Geometric
skinning with approximate dual quaternion blending. ACM
Transactions on Graphics (TOG), 27(4):105, 2008. 3

[7] M. Muja and D. G. Lowe. Fast approximate nearest neighbors
with automatic algorithm configuration. 4

[8] A. Myronenko and X. Song. Point set registration: Coherent
point drift. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 32(12):2262–2275, Dec 2010. 1, 2, 4

[9] R. B. Rusu and S. Cousins. 3d is here: Point cloud library
(pcl). In Robotics and automation (ICRA), 2011 IEEE Inter-
national Conference on, pages 1–4. IEEE, 2011. 4

