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1. Ablation Study on Context Fusion.

We perform an ablation study on Stanford Dogs 120 for the context fusion stage. We first replace the multiple losses
with the single loss and the accuracy drops from 93.9% to 92.4%. This suggests that multiple losses help regularize the
training process and produce more discriminative features for image classification. We then keep the multiple losses setting
in subsequent experiments. Second, the Stacked LSTM module is removed and we conduct experiments with two settings, a
feature concatenation module and an averaging module. In the feature concatenation module, the features of all the n+2 parts
are concatenated. And in the averaging module, the classification output of multiple features are summed. The classification
accuracies achieved are decreased by 5.8% and 8.7% respectively. The performance drop suggests that fusing n + 2 image
patches through LSTM is helpful for final image classification.

2. More Examples of Intermediate Results

We present a list of intermediate results of our pipeline. In the first row of Fig[I] Fig[2]and Fig[3] images from (a) to (e)
denote the process of pseudo object mask and object bounding box generation. In the second row, images (f) to (j) indicate
the process of Mask RCNN refinement. Fig[d] Fig[5and Fig[6]denote object parts generated by our proposed complementary
parts model.
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Figure 1. Example intermediate results of Caltech256 [1]].
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Figure 2. Example intermediate results of Stanford Dogs 120 [2].
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Figure 3. Example intermediate results of CUB 2011-200 [3].



Figure 4. Complementary Parts results of Stanford Dogs 120 [2].



Figure 5. Complementary Parts results of CUB 2011-200 [3].



Figure 6. Complementary Parts results of Caltech256 [1].



