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Figure 1: Cosine similarity distributions of rendered and
real images LFW based on activations at the embedding
layer of VGG-Face network[3]. Our method achieves more
than 0.5 similarity on average which [1] has 0.35 average
similarity and [6] 0.16 average similarity. Camera and light-
ing parameters are fixed for all renderings.

1. Experiments on LFW

In order to evaluate identity preservation capacity of the
proposed method, we run two face recognition experiments
on Labelled Faces in the Wild (LFW) dataset [2]. Follow-
ing [1], we feed real LFW images and rendered images of
their 3D reconstruction by our method to a pretrained face
recognition network, namely VGG-Face[3]. We then com-
pute the activations at the embedding layer and measure co-
sine similarity between 1) real and rendered images and 2)
renderings of same/different pairs.

In Fig. 1 and 2, we have quantitatively showed that our
method is better at identity preservation and photorealism
(i.e., as the pretrained network is trained by real images)
than other state-of-the-art deep 3D face reconstruction ap-
proaches [1, 6].
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Figure 2: Our method successfully preserve identity so that
distribution of cosine similarity of same/different pairs is
separable by thresholding. Camera and lighting parameters
are fixed for all renderings.

2. More Qualitative Results

Figures 3, 4, 5, and 6 illustrate the reconstructions of
our method under different settings in comparison to the
other state-of-the-art methods. Please see figure captions
for detailed explanation.
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Figure 3: Our results on BAM dataset[7] compared to [1].
Our method is robust to many image deformations and even
capable of recovering identities from paintings thanks to
strong identity features.
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Figure 4: Qualitative comparison with [8, 5] by overlaying
the reconstructions on the input images. Our method can
generate high fidelity texture with accurate shape, camera
and illumination fitting.
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Figure 5: Qualitative comparison with [4] by means of texture maps, whole and partial face renderings. Please note that
while our method does not require any particular renderer for special effects, e.g., lighting, [4] produce these renderings with
a commercial renderer called Arnold.
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Figure 6: Results under more challenging conditions, i.e. strong illuminations, self-occlusions and facial hair. (a) Input
image, (b) Estimated fitting overlayyed including illumination estimation, (c) Overlayyed fitting without illumination, (d)
Pixel-wise intensity difference of (b) to (c), (e) Estimated shape mesh


