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Average precision improvement for each label

To further verify that considering visual attention consis-
tency under certain image transforms can benefit the multi-
label image classification, we compare the average preci-
sions (APs) achieved for each label by different models
trained on WIDER Attribute dataset [6] in Table 1. The
models are denoted in the same way with the Table 1 in
the original paper: R50, R50+t, R50+r, R50+s, R50+f,
R50+ACt, R50+ACr, R50+ACs, R50+ACf, R50+ACfs,
R101, R101+ACt, R101+ACr, R101+ACs, R101+ACf, and
R101+ACfs. Note that:

• models R50 and R101 are the baseline models with
ResNet50 and ResNet101 as backbone, respectively.

• models R50+t, R50+r, R50+s and R50+f are the mod-
els using translation, rotation, scaling and flipping
as data augmentation, without considering atten-
tion consistency under these image transforms, respec-
tively. To be specific, these models are trained from the
proposed two-branch network by removing the atten-
tion consistency loss. The backbone is ResNet50.

• models R50+ACt, R50+ACr, R50+ACs, R50+ACf and
R101+ACt, R101+ACr, R101+ACs, R101+ACf are
the models considering attention consistency under
translation, rotation, scaling and flipping, respectively.
The backbones of the above two sets of models are
ResNet50 and ResNet101, respectively.

• models R50+ACfs and R101+ACfs are the models
considering attention consistency under both scal-
ing and flipping with backbones of ResNet50 and
ResNet101, respectively.

We can notice that the average precision of every label is
improved by considering attention consistency, especially
that under rotation, scaling, flipping and both scaling and
flipping.

∗Corresponding author.

Selection of multi-label image classification loss

Though there exist various loss functions that can be
used as multi-label image classification loss, we simply use
the weighted sigmoid cross entropy loss [4, 5, 7] as clas-
sification loss in the proposed network. To verify that the
classification loss of the proposed network is not limited
to weighted sigmoid cross entropy loss, we further replace
it with multi-label soft margin loss 1 (which is also mod-
ified from cross entropy loss) and train models R50 and
R50+ACf denoted in Table 1. As shown in Table 2, the pro-
posed network can also work well if the multi-label image
classification loss is changed.

Impact of hyper-parameter λ in Eq. (5)

In the original paper, we simply set λ = 1 in Eq. (5),
since we find that multi-label image classification loss and
attention consistency loss are in the same magnitude at the
start of the model training. We further try different values
assigned to λ for the training of model R50+ACf denoted in
Table 1 and show the achieved mAPs in Table 3. The mAP
results show that our selection of hyper-parameter λ = 1 is
reasonable.

Impact of transformed image size for attention con-
sistency under image scaling

In the original paper, we mainly considering attention
consistency under translation, rotation, scaling and flip-
ping. There may be more applicable transforms that can
be embedded into the proposed network.

Existing CNNs usually resize the input images to a
fixed size for image classificaition task, e.g., 227 × 227
for AlexNet [3], 224 × 224 for VGG [8], ResNet [1],
DenseNet [2], etc. We all know that the input size of a CNN
can influence the performance of trained model, since resiz-
ing to a smaller size may result in more information loss.
Therefore, for fair comparison with the existing works, we
fix the original image size as 224 × 224 (default input size

1Provided by PyTorch

1



Table 1. Average precisions (APs) of each label achieved by baseline models and models trained from the proposed network.
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R50 94.3 84.1 70.8 93.8 76.8 95.0 80.7 90.3 77.0 94.6 81.4 75.3 88.4 64.7 83.4
R50+t 94.7 85.9 69.2 93.8 78.8 95.3 81.3 91.1 76.7 95.6 82.0 75.4 89.0 62.0 83.7
R50+r 94.3 85.0 68.7 93.8 77.7 95.0 81.4 90.8 76.0 95.2 80.4 73.9 88.7 64.2 83.2
R50+s 94.6 85.5 71.0 94.5 77.2 95.2 81.5 91.1 77.0 94.9 81.6 76.2 88.7 64.3 83.9
R50+f 95.0 85.6 73.8 94.4 76.8 95.1 81.3 91.2 77.0 95.1 81.8 77.2 88.7 64.8 84.2
R50+ACt 95.0 86.0 71.3 93.9 77.4 95.4 81.8 90.6 76.4 95.2 82.2 76.3 88.3 63.8 83.9
R50+ACr 95.1 86.7 71.1 94.7 79.6 95.8 82.6 91.5 79.6 96.0 81.9 76.5 90.3 68.5 85.0
R50+ACs 95.4 87.4 73.2 95.0 80.3 96.0 84.2 92.2 79.9 95.9 84.2 77.2 90.3 66.6 85.6
R50+ACf 95.7 87.8 75.4 95.1 81.0 96.1 84.2 92.7 80.3 95.9 84.8 80.5 90.2 68.0 86.3
R50+ACfs 96.3 88.7 76.9 95.3 82.6 96.2 85.2 93.1 80.7 96.0 85.8 78.5 90.9 68.7 86.8
R101 95.1 85.8 72.7 94.4 79.0 95.6 82.4 91.6 78.7 95.2 83.0 76.3 89.8 66.6 84.8
R101+ACt 95.0 86.3 71.2 94.3 78.3 95.6 83.1 91.1 78.7 95.3 83.4 75.7 89.3 65.5 84.6
R101+ACr 95.5 88.5 72.8 95.3 81.7 96.2 83.2 92.8 80.9 95.9 84.2 77.4 90.9 68.5 86.0
R101+ACs 95.6 88.4 73.7 95.1 81.8 96.3 84.8 93.0 81.1 95.9 86.1 78.1 90.8 69.1 86.5
R101+ACf 96.0 88.9 76.4 95.7 81.8 96.5 84.9 93.8 82.0 96.5 86.7 80.2 90.5 69.2 87.1
R101+ACfs 96.2 89.4 75.7 96.0 83.4 97.0 85.4 94.0 82.6 96.4 87.4 79.4 91.5 69.4 87.5

Table 2. Performance of baseline model R50 and model R50+ACf
(attention consistency under flipping) using different classification
loss functions: `c1 – weighted sigmoid cross entropy loss; `c2 –
multi-label soft margin loss. (on WIDER dataset)

model mAP mA F1-C P-C R-C F1-O P-O R-O
R50+`c1 83.4 82.0 73.9 79.5 69.4 79.4 82.3 76.6
R50+ACf+`c1 86.3 84.5 76.4 78.9 74.3 81.2 82.6 79.8
R50+`c2 83.5 81.8 73.8 80.3 68.7 79.4 83.3 75.8
R50+ACf+`c2 86.2 82.6 75.5 83.3 69.7 81.1 85.3 77.3

Table 3. Impact of different values of λ on mAP for model
R50+ACf, considering attention consistency under flipping.

λ = 0.1 1 2 10 20
mAP (%) 85.3 86.3 86.3 85.6 85.0

of ResNet50 / 101, which is also used by other methods),
when training the proposed network on WIDER dataset.

However, when the attention consistency under image
scaling is considered by the proposed network, the trans-
formed (scaled) images are resized to a different size. If
the transformed images are upscaled to a size larger than
224 × 224, there may be performance improvement of the
proposed network resulting from larger input size. To fo-
cus on the performance improvement from considering at-
tention consistency, we form the scaled images by down-
scaling the original images to 192× 192 in the original pa-
per, when considering attention consistency under scaling.
Note that comparing the performance of model R50+ACs
and model R50+s (using multi-scale input as data augmen-
tation) with model R50 has already verified that the perfor-
mance improvement are mainly from considering attention
consistency, not the multi-scale input.

To further verify the impact of different input sizes of

Table 4. mAP (%) performance achieved on WIDER dataset
by the proposed network considering attention consistency under
scaling with fixed original image size 224 × 224 and different
transformed image sizes, separately.

scaled image 160× 160 192× 192 256× 256
original image
224× 224

85.2 85.6 86.1

the branch taking transformed images as input, we further
conduct experiments of fixing the size of transformed im-
ages to 160 × 160 and 256 × 256, respectively, to train
model R50+ACs with attention consistency under scaling.
As shown in Table 4, when the input size of the branch
taking transformed images increases, the performance of
mean average precision (mAP, %) is improved (85.2% →
85.6% → 86.1%). This result suggests that the perfor-
mance of the proposed network may be further improved
by upscaling the input.

Impact of different usages of certain image trans-
form

Besides the horizontal flipping embedded in the pro-
posed network, we also conduct experiment of embedding
vertical flipping in the proposed network. As shown in Ta-
ble 5, even though the vertical flipping is not normal in prac-
tice, considering attention consistency under vertical flip-
ping can also slightly improve the multi-label image classi-
fication performance. We can also notice that considering
attention consistency under certian transform can perform
much better than using the transform as data augmentation.



Table 5. Performance comparison of using flipping transform differently.
model usage of flipping mAP mA F1-C P-C R-C F1-O P-O R-O
R50 without flipping 83.4 82.0 73.9 79.5 69.4 79.4 82.3 76.6
R50+f horizontal flipping as data augmentation 84.2 82.8 74.6 79.5 70.7 80.0 82.9 76.9
R50+ACf attention consistency under horizontal flipping 86.3 84.5 76.4 78.9 74.3 81.2 82.6 79.8

attention consistency under vertical flipping 84.9 83.3 74.9 78.0 72.2 80.1 81.9 78.4
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Figure 1. Attention heatmaps for classifying different labels from flipped, original and scaled images using different models. The red color
indicates attention regions.

Supplementary qualitative analysis

To further verify that enforcing attention consistency un-
der certain transforms can help CNNs focus attention on
regions more relevant to each label, we show more quali-
tative results of attention heatmaps for classifying different
labels from flipped, original and scaled images using differ-
ent models, respectively, in Fig. 1 (similar to Fig. 5 in the
original paper). From Fig. 1, we can notice that R50 usu-
ally focuses attention on inconsistent regions of the original
and the transformed images. Even worse, the attention of
current R50 may cover many regions irrelevant to the spe-
cific label. As the attention consistency under a transform
(flipping / scaling / both) is enforced by the proposed net-
work, the attention regions usually become consistent under
this transform. Besides, as attention regions are forced to be
consistent under certain transform, they may be focused on

regions more relevant to the specific label.
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