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S. 1. Quantifying the Performance of a CW-ToF Coding Scheme
In this supplementary section, we provide a detailed description and derivation of the mean expected absolute depth error

of a CW-ToF coding scheme.
A general metric to evaluate the performance of a coding scheme is the mean expected absolute depth error, first introduced

in [3]. Consider the 3-D space consisting of all possible unknown vectors U = [d, Is, Ia] (distance d, effective albedo Ia,
and ambient brightness Ia). Each coding function pair, Mi(t) and Di(t), will map some U to an intensity measurement
Ii. A decoding algorithm, D, is used to map the vector of K brightness measurements D : I → U. Due to different noise
sources such as shot noise, sensor read noise, quantization, and saturation, the sensor measures a noisy intensity Î = I + η.
The decoding algorithm will then perform a noisy mapping of Î to an estimated vector of unknowns Û. Since Î is a random
variable we can calculate the expected absolute depth error for a given unknown vector U and coding scheme as follows:

E[|d− d̂|] =

∫
Î

|d− d̂|p(Î|I)dÎ (1)

where p(Î|I) is the probability density function of the measured noisy brightness Î, given the true brightness I. Equation 1
gives the expected depth error for a fixed unknown U and coding scheme. To evaluate the performance of a coding scheme
we can calculate the mean expected absolute depth error over the full depth range,
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∫
Î

|d− d̂|p(Î|I)dÎdd (2)

Equation 2 is the mean expected absolute depth error for a fixed effective albedo Is and ambient component Ia. For simplicity,
in this paper we refer to the mean expected absolute depth error as the mean depth error. Each point in the mean depth error
surface plots shown in the paper and in this report (e.g. Figures 4, 6, 7) correspond to an evaluation of Equation 2 for a given
Is and Ia. Note that the total source power and the ambient illumination form part of Is and Ia, respectively. Consequently,
we only need to vary those two terms to generate the mean depth error surface plots.

Computation of the expected absolute depth error: Since we know p(Î|I) we can efficiently compute the first integral in
Equation 2 via Monte Carlo integration. This is done by sampling Î from p(Î|I), computing d̂, and approximating E[|d− d̂|]
using those samples. For our simulations we found that 20, 000 samples sufficed to give a stable E[|d− d̂|].
Normalized cross-correlation for depth decoding: The above description of the mean depth error computation assumes
that the decoding algorithm D is known. A naive computation of d̂ given Î for an arbitrary coding scheme would involve
a computationally expensive 3-dimensional search over the space of all possible unknowns U. Fortunately, we can greatly
reduce the computational complexity of depth decoding by following a similar near-optimal decoding approach as in [6]. Let
C be the N × K matrix where each column is a correlation function χi for a given coding scheme. The phase shift and
consequently d̂ of the modulation function will be proportional to the argument that maximizes the zero-mean normalized
cross correlation (ZNCC) between C and Î, as shown in Equation 3. This procedure is analog to the standard ZNCC template
matching algorithm commonly used in image processing [9].

d̂ ∼ argmax
1≤i≤N

Ci −mean(Ci)

‖Ci −mean(Ci)‖
· Î−mean(Î)

‖Î−mean(Î)‖
(3)

The above decoding algorithm works for arbitrary coding schemes and has linear time complexity (O(N)). For certain
coding schemes, such as sinusoid coding, the decoding algorithm has an analytical expression, which effectively reduces
the run-time complexity to O(1). For any practical implementation of a coding scheme, the run-time complexity of their
decoding algorithms is one additional trade-off that needs to be considered. Previous coding function design work has
demonstrated that efficient depth decoding algorithms for a specific coding scheme can be developed through the geometric
analysis of the correlation functions [3] or through regression methods [1].



S. 2. How does the Performance of Sinusoid Coding Change with the Number of Measurements?
In this section we show that if the total integration time is fixed and split evenly among K intensity measurements the

performance of a sinusoid coding scheme remains constant as K varies. We follow a similar analysis as in [3].
We want to bound the expected absolute depth error, E[|d−d̂|], due to intensity measurement error E[|I− Î|]. Furthermore,

we want to show that as we vary K the bound does not change for a sinusoid coding scheme. We start by considering the
first-order taylor series approximation of an intensity measurement about the point d = d̂:

I(d) = I(d̂) +
∂I

∂d
(d̂)(d− d̂) (4)

where ∂I
∂d (d̂) = Isχ

′(d̂). For simplicity of the derivation we assume that the effective albedo Is does not depend on d 1. Let
I(d̂) = Î and I(d) = I. We can re-arrange Equation 4 and take the magnitude of both sides in the following way:

|d− d̂| = |I− Î|
|Isχ′(d̂)|

=

√∑K
i=1(Ii − Îi)2

Is

√∑K
i=1(χ′i(d̂))2

(5)

Equation 5 gives us a relationship between the absolute depth error (|d − d̂|) due to small measurement noise (|I − Î|).
Since both Î and d̂ are random variables we can take the expectation of both sides of the expression,

E[|d− d̂|] = E[

√∑K
i=1(Ii − Îi)2

Is

√∑K
i=1(χ′i(d̂))2

] ≈
E[
√∑K

i=1(Ii − Îi)2]

E[Is

√∑K
i=1(χ′i(d̂))2]

(6)

where the above equality comes from the first-order approximation of the expectation of the ratio of two random variables
[8, 2, 10]. Recall from our Gaussian noise model that Îi ∼ N(Ii, Ii + σ2

read) [4], where the variance terms Ii and σ2
read

correspond are associated to shot noise and sensor read noise respectively. Therefore we can calculate bound the expectation
of the numerator and calculate it in the following way:

E[

√√√√ K∑
i=1

(Ii − Îi)2] ≤

√√√√ K∑
i=1

E[(Ii − Îi)2] =

√√√√ K∑
i=1

Var[Îi] =

√√√√Kσ2
read +

K∑
i=1

Ii (7)

where the above inequality follows from Jensen’s inequality on concave function (i.e. square root) and from the linearity of
expectation. We can continue bounding the numerator by analyzing the upper-bound of Ii and recalling that 0 ≤ D(t) ≤ 1,

Ii = Is

∫ τ

0

D(t)M̄(t− 2d

c
)dt+ Ia ≤ Is

∫ τ

0

M̄(t− 2d

c
)dt+AT = Is +AT (8)

where the above inequality is the result from upper bounding D(t) = 1 and consequently Ia = A
∫ T
0
D(t)dt = AT .

Substituting Equation 8 into Equation 7 we get:

E[

√√√√ K∑
i=1

(Ii − Îi)2] ≤
√
K(σ2

read + Is +AT ) (9)

Note that we can only sum up the Is and Ia terms from each measurement as we did above because we assume that the
exposure/integration time T from all measurements is the same. We can now analyze the denominator from Equation 6:

E[Is

√√√√ K∑
i=1

(χ′i(d̂))2] = Is(
1

dmax
)

∫ dmax

0

√√√√ K∑
i=1

(χ′i(d̂))2dd̂ =
IsLcurve

dmax
(10)

where we assume that with no prior information the probability of all depths d̂ is the same, i.e. p(d̂) = 1
dmax

. We also
introduce the coding curve length term Lcurve as defined in [3]. Furthermore, we denote dmax as the maximum unambiguous

1In practice, Is does depend on scene distances d due to light intensity fall-off



depth determined by the fundamental frequency of the coding scheme. Bringing together the results from Equations 6, 9 and
10 we can define the upper bound on the expected depth error due to small measurement noise:

E[|d− d̂|] ≤
dmax

√
K(σ2

read + Is +AT )

IsLcurve
(11)

Equation 11 is the upper bound of the expected absolute depth error for an arbitrary coding scheme where the total
integration time is split evenly among measurements. For a sinusoid coding scheme we can give an explicit bound by plugin
in the the length of the sinusoid coding curve Lsinusoid =

√
K

4
√
2

,

E[|d− d̂|] ≤
(4
√

2)dmax
√
σ2
read + Is +AT

Is
(12)

Note that the dependence on K disappears. Hence, the performance of a sinusoid coding scheme does not increase as K
increases if the total integration time is fixed and evenly split. This is an important result that adds one additional heuristic
in the search of families of high-performance coding functions. The coding curve length of a coding function family should
increase faster than

√
K as K increases. The Hamiltonian coding curve length increase exponentially with K [3]. This

means that if we had no hardware constraints, a Hamiltonian coding scheme with a large K could achieve an increasingly
small depth error, without having to increase total power and total exposure time.



S. 3. Power-limited High-Performance Modulation and Demodulation Functions
In this section we present the correlation decomposition for Hamiltonian K = [3, 4, 5] with a finite light source peak

power and infinite bandwidth. Please refer to section 5 of the main document for a detailed discussion of how the results in
this section are obtained.
Main observations: Figures 1, 2, and 3 show the power-limited correlation decompositions for Hamiltonian K = 3, K = 4,
and K = 5 under three maximum power constraints: Pmax = 30Pave, Pmax = 5Pave, and Pmax = 2Pave. We find that
all coding schemes are able to achieve a zero-error decomposition as long as the maximum power constraint is high enough;
6Pave for Hamiltonian K = 3, 12Pave for Hamiltonian K = 4, 30Pave for Hamiltonian K = 5. Interestingly, at maximum
power levels where none of the coding schemes achieve a zero error decompositon, we can still find good approximations.
For instance, at Pmax = 5Pave, despite the maximum power being 6 times lower than the zero-error threshold we are still
able to find good approximations of all correlation functions.

• Shape of the functions: All solutions have a binary structure. In particular, a common pattern is shared by all the
non-zero error solutions, i.e. solutions that result in approximations of Hamiltonian codes. For a given maximum power
constraint, the modulation function will be a binary function with a peak power equal to Pmax.

Summary: In summary, the resulting power-limited binary high-performance codes could be easily implemented in current
CW-ToF cameras. Their binary structure allows them to leverage the digital square wave generators used in CW-ToF cameras.
Furthermore, even with strong maximum power constraints (e.g. Pmax = 5Pave) our algorithm finds good approximations
to the objective high-performance codes.

Power-limited Decomposition for Hamiltonian K = 3

Chosen Decompositions for Hamiltonian, K=3 

Source Modulation Sensor Demodulation Correlation Functions

𝑖 = 1

𝑖 = 3

𝑖 = 2

Supplementary Figure 1: Power-limited decomposition for Hamiltonian K = 5. Power-limited correlation function
decomposition for Hamiltonian K = 3 at different maximum power levels. At Pmax ≥ 6Pave the resulting modulation and
demodulation functions have the same correlation as the objective Hamiltonian correlation. This is clearly illustrated in the
case of Pmax = 30Pave (blue) where the chosen solution only uses 6Pave. When Pmax ≤ 6Pave only approximations of the
objective correlations are obtained.



Power-limited Decomposition for Hamiltonian K = 4

Chosen Decompositions for Hamiltonian, K=4 

Source Modulation Sensor Demodulation Correlation Functions

𝑖 = 1

𝑖 = 3

𝑖 = 2

𝑖 = 4

Supplementary Figure 2: Power-limited decomposition for Hamiltonian K = 4. Power-limited correlation function
decomposition for Hamiltonian K = 4 at different maximum power levels. At Pmax ≥ 12Pave the resulting modulation and
demodulation functions have the same correlation as the objective Hamiltonian correlation. This is clearly illustrated in the
case of Pmax = 30Pave (blue) where the chosen solution only uses 12Pave. When Pmax ≤ 12Pave only approximations of
the objective correlations are obtained.

Power-limited Decomposition for Hamiltonian K = 5

Chosen Decompositions for Hamiltonian, K=5 

Source Modulation Sensor Demodulation Correlation Functions
𝑖 = 1

𝑖 = 3

𝑖 = 2

𝑖 = 4

𝑖 = 5

Supplementary Figure 3: Power-limited decomposition for Hamiltonian K = 5. Power-limited correlation function
decomposition for Hamiltonian K = 5 at different maximum power levels. At Pmax ≥ 30Pave the resulting modulation
and demodulation functions have the same correlation as the objective Hamiltonian correlation. When Pmax ≤ 30Pave only
approximations of the objective correlations are obtained.



S. 4. Performance of Power-limited Coding Functions
In this section we present the performance (mean depth errors) for power-limited Hamiltonian K = [3, 4, 5], sinusoid, and

multi-frequency sinusoid.
For the simulations we used the following parameters. Fundamental frequency f0 = 15Mhz, corresponding to a 10m

depth range. Total integration time of 300ms, and scene albedos of 0− 1. The source and ambient average power are varied
to emulate a wider range of realistic SNR levels. At each source and ambient power level the mean depth error, as described
in Section S. 1, is computed.
Main observations: Figure 4 shows the mean depth error results for power-limited coding schemes at maximum power
levels of 30Pave, 15Pave, 5Pave, and 2Pave. Power-limited Hamiltonian coding functions are robust to low SNR levels,
even at strict maximum power levels (e.g. Pmax = 5Pave). On the other hand, the performance of multi-frequency sinusoid
rapidly decays as we lower SNR (i.e. lower source power and increase ambient power). In the limiting case of Pmax = 2Pave
the best performing coding scheme depends on the SNR level. At high SNR multi-frequency sinusoid is the best choice and
at low SNR Hamiltonian K = 3 is the better choice. Note that in that case Hamiltonian K = 3 becomes equivalent to square
coding (see Figure 1).

• Crossing points due to phase unwrapping errors: As we decrease SNR the performance of multi-frequency sinusoid
quickly degrades due to phase unwrapping errors. This can be seen from the crossing points in all the mean depth
error plots as source power and ambient power are varied. The proposed practical coding schemes are robust to phase
unwrapping errors, despite the high-frequency coding functions present in some of them (e.g. Hamiltonian K = 5, see
the fifth rows of Figure 3).

• Crossing points due to stronger power constraints: In the extreme power-limited case where Pmax = 2Pave there
are multiple crossing points across coding schemes as we vary the SNR level. Hamiltonian K = 3, however, shows the
most stable performance across all SNR levels.

Summary: Overall the proposed power-limited coding schemes outperform sinusoid-based codes at most SNR levels. As
long as the maximum power constraint is greater than 2Pave the choice of coding scheme is relatively clear (i.e. Hamiltonian
K = 5).



Mean Depth Errors, Max Power = 30x Avg Power
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Mean Depth Errors, Max Power = 5x Avg Power
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Mean Depth Errors, Max Power = 2x Avg Power

M
e

a
n

 D
e

p
th

 E
rr

o
r 

(m
m

)

𝑃𝑚𝑎𝑥 = 2 ∙ 𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒

Note: At this 
extreme case all 
Hamiltonian codes 
are square waves. In 
fact, K=3 becomes 
square coding. Ham 
K=5 at the highest 
SNR levels has lower 
mean depth error 
that multi freq
sinusoid.

Supplementary Figure 4: Mean depth error results for power-limited coding schemes. Mean depth error simulations for
the power-limited coding schemes at maximum power levels of 30Pave, 15Pave, 5Pave, and 2Pave and infinite bandwidth.
For maximum power levels above 5Pave Hamiltonian K = 5 outperforms all coding schemes at all SNR levels. In the
limiting case when Pmax = 2Pave Hamiltonian K = 3 is the best choice for low SNR and multi-frequency sinusoid is the
best choice for high SNR levels.



S. 5. Band-limited High-Performance Modulation and Demodulation Functions
In this section we present the correlation decomposition for HamiltonianK = [3, 4, 5] with a finite light source peak power

and finite bandwidth. The binary and maximum power constraints are applied to the input modulation and demodulation
functions of the CW-ToF system. The bandwidth constraint is applied to the output functions which get correlated.
Main observations: In this paper we analyzed the band-limited correlation decomposition for maximum frequencies of:
fmax = 10f0 and 5f0. For each bandwidth constraint we performed the decomposition at maximum power levels of
Pmax = 30Pave, 5Pave, 2Pave. Figure 5 shows the band-limited decomposition of Hamiltonian K = 4. At Pmax = 30Pave
the bandwidth constraint also imposes an implicit peak power constraint as shown in the transition of the input to the out-
put modulation functions. Therefore, the improvement in the correlation function estimation obtained from increasing the
maximum power constraint is minimal, specially in the case of 5f0 (e.g. difference between blue and read lines). Similar
band-limited decomposition results are obtained for Hamiltonian K = 3 and K = 5. Please refer to the appendix of this
document for these decompositions.

• Shape of the functions: Similar to the power-limited results, all solutions for the input modulation and demodulation
functions have a binary structure. Hamiltonian coding function require infinite bandwidth to be able to implement them
perfectly. Therefore, in a band-limited setting all solutions will be approximations. Interestingly, the same pattern
found in the power-limited approximations is present in the band-limited approximations. For a given maximum power
constraint, the input modulation function will be a binary function with a peak power equal to Pmax.

Summary: In summary, despite the fact that Hamiltonian codes require infinite bandwidth to be able to be implemented
perfectly, we can achieve good approximations even at strong bandwidth constraints.



Band-limited Decomposition for Hamiltonian K = 4 with fmax = 10f0

Chosen Decompositions for Hamiltonian, K=4, Max Freq ~ 10x Fundamental 

Input Modulation Input Demodulation Correlation Functions
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Band-limited Decomposition for Hamiltonian K = 4 with fmax = 5f0

Chosen Decompositions for Hamiltonian, K=4, Max Freq ~ 5x Fundamental 

Input Modulation Input Demodulation Correlation Functions

𝑖 = 1

𝑖 = 3

𝑖 = 2

Output Modulation Output Demodulation

𝑖 = 4

Supplementary Figure 5: Band-limited decomposition for Hamiltonian K = 4.



S. 6. Performance of Band-limited Coding Functions
In this section we present the performance (mean depth errors) for band-limited Hamiltonian K = [3, 4, 5], sinusoid, and

multi-frequency sinusoid.
Similar mean depth error simulation parameters are used as in Section S. 4.

Main observations: The performance of all coding schemes is degraded due to the system’s bandwidth. Nonetheless, the
severity of the degrade in performance varies across coding schemes (e.g. the effect on sinusoid coding is almost negligible).
Figures 6 and 7 show that the choice of coding scheme is highly dependent on the hardware constraints. A weak bandwidth
constraint (e.g. infinite or large bandwidth) leads to our practical Hamiltonian K = 5 being the best choice. As we introduce
stronger bandwidth constraints as in Figures 6 and 7, the band-limited Hamiltonian K = 4 shows the best performance.
However, if the maximum power constraint is lowered too much (e.g. 2Pave, right-most plot in Figures 6 and 7) the band-
limited HamiltonianK = 3 has the best performance. Therefore, in practice, a clear understanding of the system’s bandwidth
and maximum power constraints is required to choose the coding scheme with the best performance.
Summary: Overall, we find that accounting for the system’s bandwidth results in the degrade of the performance of all coding
schemes. In particular, different from the mean depth error results in the power-limited setting described in Section S. 4, the
Hamiltonian coding schemes outperform sinusoid-based codes at all SNR levels. Although, the choice of best performing
coding scheme highly depends on the hardware constraints, practical coding schemes based on Hamiltonian codes seem to
consistently be the better choice over sinusoid-based codes.Mean Depth Errors, Max Power = 30x Avg Power, Max Freq ~ 10x Fundamental
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Supplementary Figure 6: Mean depth error results for band-limited coding schemes with fmax = 10f0.
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Supplementary Figure 7: Mean depth error results for band-limited coding schemes with fmax = 5f0.



S. 7. Zero-mean Complementary Demodulation Functions
In this section we discuss one additional important constraint that should be considered when designing practical CW-ToF

coding schemes.
Most commercial CW-ToF cameras, if not all, implement a two/four-bucket pixel architecture to efficiently use the total

modulation function power [5, 11]. The efficiency of that architecture derives from the fact that any signal arriving at
the sensor when the demodulation function is 0 is being discarded. A two-bucket pixel architecture overcomes this by
taking two intensity measurement simultaneously where the demodulation functions are negated versions of each other (i.e.
complementary functions). Commonly used coding schemes such as 4-bucket sinusoid leverage this pixel architecture to
emulate a zero-mean demodulation function by taking the difference of these simultaneous measurements. Consequently,
a CW-ToF camera based on 4-bucket sinusoid coding only needs to take 2 zero-mean intensity measurements to solve for
depths. For the purposes of this discussion we assume sinusoid coding is implemented with low-pass filtered square functions,
which is in fact what is done in practice. For more details on the implementation details of sinusoid coding on two-bucket
pixel architectures please refer to [5, 11, 7]. Figure 8 shows the mean depth error results for a 4-bucket sinusoid coding
implementation that uses a zero-mean demodulation vs. a regular sinusoid coding implementation. Effectively, the regular
sinusoid implementation uses half of the total power available decreasing its overall performance.

Mean Depth Errors, Zero-mean vs. non-zero mean performance
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Supplementary Figure 8: Performance of zero-mean demodulation vs. regular demodulation functions. The energy
efficient zero-mean demodulation coding schemes outperform their regular implementations. A regular implementation of
a coding scheme discards all the photons arriving at the sensor when the demodulation function is 0. For both sinusoid and
Hamiltonian K = 3 coding schemes this results in only using half of the total power and consequently their performance
is significantly degraded. Interestingly, the regular implementation of Hamiltonian K = 3 still outperforms the zero-mean
sinusoid coding scheme despite using half of the total power.

Zero-mean demodulation constraint: The demodulation functions in practical coding schemes should be able to leverage
a two-bucket pixel architecture. This introduces two additional constraints: the number of measurements K should be even,
and for every demodulation function there should be a second demodulation function that is the negation/complementary of
it.

Zero-mean demodulation Hamiltonian coding schemes: At first glance, none of the practical Hamiltonian coding schemes
proposed in this paper adhere to these constraints. However, the binary structure of the demodulation functions makes it sim-
ple to extend these coding schemes such that they adhere to the above constraint. For all of the proposed binary coding
schemes we can simply double the number of measurements K, where the demodulation functions in the additional K mea-
surements will be the negated versions of the first K demodulation functions. The proposed zero-mean Hamiltonian codes
will require 2K measurements as opposed to K in their regular counterparts. Figure 8 shows the performance improvement
of a zero-mean Hamiltonian K = 3 over its regular implementation. It is important to clarify that in this case, zero-mean
Hamiltonian K = 3 actually had K = 6 intensity measurements, however, for the sake of consistent notation we kept its
original label.

K-bucket trapezoidal coding family: One drawback of the zero-mean demodulation Hamiltonian coding family is that the
coding scheme with the least number of measurements need K = 6, which translates to 3 measurements with a two-bucket



architecture. On the other hand, zero-mean sinusoid can be implemented with only K = 4 measurements. To this end, we
propose a new CW-ToF coding family inspired on the structure of Hamiltonian K = 3 which we denote as the trapezoidal
coding scheme family. A trapezoidal coding scheme will have an even number of measurements K, and the modulation and
demodulation functions will have the following simple structure:

1. Modulation Functions: All K modulation functions are equal. They are square functions with a peak power of KPave
and a duty cycle of 1

K .

2. Demodulation Functions: All demodulation functions are square functions with a 1
2 duty cycle. Each demodulation

function, Di(t), will have a phase shift equal to 2π
K radians.

Performance of practical zero-mean demodulation coding schemes: Figure 9 shows the performance of different zero-
mean demodulation coding schemes for various K. All simulation parameters are the same for all coding schemes, including
total integration time. We omit the comparison of zero-mean Hamiltonian and trapezoidal for K = 6 since they correspond
to the exact same coding scheme. Similar to zero-mean Hamiltonian, trapezoidal outperforms sinusoid-based schemes at
low and medium SNR. Furthermore, zero-mean Hamiltonian codes outperform Trapezoid coding schemes. However, the
comparisons in Figure 9 are under ideal hardware settings. Hence, it is important to note that trapezoidal coding schemes have
lower peak power and bandwidth requirements than Hamiltonian. Therefore, a performance analysis at different maximum
power and frequency levels is required to be able to determine which coding scheme has better performance.
Summary: The zero-mean demodulation constraint described in this section presents an interesting direction of future work
on practical coding function design. High-performance coding schemes that adhere to the binary constraint, such as the
ones introduced in this paper, can be easily adapted to leverage a two-bucket pixel architecture. Additionally, we propose a
Trapezoid coding family that adheres to the zero-mean demodulation constraint and significantly outperforms sinusoid-based
coding schemes. Furthermore, they have less strict maximum power and bandwidth requirements than Hamiltonian codes.
An analysis under various hardware constraints, similar to the analysis done in this paper, could help determine under which
conditions the Trapezoid coding family can outperform Hamiltonian codes.
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Supplementary Figure 9: Performance of zero-mean demodulation coding schemes. Figure (a), (b), and (c) show the
performance of different zero-mean demodulation coding schemes under the same simulation parameters and in an ideal
hardware setting (infinite maximum power and infinite bandwidth). The 4-bucket trapezoid outperforms 4-bucket sinusoid
(a). In (b) and (c) Hamiltonian codes outperform all coding schemes. However, trapezoid codes have lower maximum power
and bandwidth requirements than Hamiltonian.



S. 8. Hardware Prototype
Figure 10 shows the CW-ToF single-pixel camera prototype developed to validate the proposed coding schemes. The

scene is flash illuminated by the laser diode. A cylindrical lens is used to improve the uniformity of the illumination on the
scene. The galvo mirrors scan every point in the scene and the incoming signal is focused onto the APD. The detected signal
is multiplied with the demodulation function with a frequency mixer. Finally, the mixer output is amplified, low-pass filtered,
and digitized by a data acquisition card, resulting in an intensity measurement.

Hardware Prototype
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Supplementary Figure 10: CW-ToF Hardware Prototype. CW-ToF hardware prototype used for the experiments presented
in the paper. The scene is flash illuminated with the laser diode and the galvo mirror system scans the scene onto the APD.
The intensity of the laser is modulated with the arbitrary function generator. The detected signal is pre-amplified and then
correlated with the demodulation function through a frequency mixer. Finally, the output of the mixer is amplified, low-pass
filtered, and digitized, resulting in a intensity measurement.



S. 9. Appendix: Additional Band-limited Correlation Decompositions
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Chosen Decompositions for Hamiltonian, K=3, Max Freq ~ 10x Fundamental 

Input Modulation Input Demodulation Correlation Functions

𝑖 = 1

𝑖 = 3

𝑖 = 2

Output Modulation Output Demodulation

Band-limited Decomposition for Hamiltonian K = 3 with fmax = 5f0

Chosen Decompositions for Hamiltonian, K=3, Max Freq ~ 5x Fundamental 

Input Modulation Input Demodulation Correlation Functions

𝑖 = 1

𝑖 = 3

𝑖 = 2

Output Modulation Output Demodulation

Supplementary Figure 11: Band-limited decomposition for Hamiltonian K = 3.



Band-limited Decomposition for Hamiltonian K = 5 with fmax = 10f0
Chosen Decompositions for Hamiltonian, K=5, Max Freq ~ 10x Fundamental 
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Supplementary Figure 12: Band-limited decomposition for Hamiltonian K = 5.
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