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1. Implementation

The code to our paper is available at https:
//github.com/OshriHalimi/unsupervised_
learning_of_dense_shape_correspondence
and will be accessible after the conference.

2. Training with scarce data

As discussed in Section 5.1 of the original manuscript,
having an unsupervised learning method bridges the gap be-
tween axiomatic solvers and supervised learning methods.
The latter can excel on particular data but often suffer from
limited generalization capabilities, while the former offer
a general purpose tool for solving matches between un-
seen pairs but suffer from computational inefficiency. Our
method can do both, while demonstrating improved capa-
bilities in both regimes. The TOSCA experiment in Section
5.4 (Figure 6) shows that our network trained on human
scans generalizes well to non-human shapes. The single-
pair experiment in Section 5.1 (Figure 1) shows that our
method can efficiently solve for a single unseen pair of
shapes. In addition, we have emphasized its usefulness in
fast inference given a scarce unlabeled train set. In what
follows we present additional evidence that did not fit into
the main paper due to page limitation.

Fast inference. As discussed above, when fast inference
is required on newly encountered unlabeled data, axiomatic
methods are no longer an option. Also, one cannot afford
full retraining and therefore has two options: either using
a pre-trained network on a labelled similar data using su-
pervised learning, or use the unsupervised network to train
quickly on few examples. We demonstrate this using an
artistic model of Deadpool, a super-hero comics character,
provided in a variety of poses sampled from animations. To
convert the artistic mesh to a manifold we used [3]. The

models were remeshed to a 7K resolution, using edge con-
traction [2]. We wish to stress that the artistic models do not
have any ground-truth labeling, emphasizing the usefulness
of an unsupervised approach.

In Figure 1 we compare the performance of the unsuper-
vised network, trained with only 3 shapes for a total of 15
minutes (100 iterations); and the supervised network trained
on FAUST synthetic human dataset (80 shapes) for 8 hours
(3K iterations). Visualized are the test examples (i.e., pairs
of shapes unavailable to the network at training time). In
both methods we show the network predictions, without any
further post processing. While both methods demonstrate
equivalent inference time of less than one second, the per-
formance gap significantly shows a clear advantage for our
method.

In addition, we show the results of an axiomatic method,
using SHOT descriptors and Functional Maps framework
and refined using product manifold filter (PMF). Compar-
ing the processing time between the methods, for the unsu-
pervised network the training process duration was 15 min-
utes, while for the supervised network it was 8 hours, and
for both networks, given a test pair of shapes, the inference
time was less than a second. On the other hand, the ax-
iomatic method had to solve the problem from scratch for
any new pair of test shapes and the PMF refinement phase
consumed one hour for each pair of shapes. We can observe
that even a very short training on a very small fraction of a
newly encountered dataset, could lead to fairly good results
on the remaining unseen pairs of shapes. A PMF refinement
procedure we can be applied also in the unsupervised case,
consuming more time and resulting in perfect matching.

3. Synthetic FAUST additional visualization

In section 5.2 of the main paper we showed in Figure
5 the results of the unsupervised network trained on syn-
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Figure 1: From left to right: Reference model; Correspon-
dences calculated using our unsupervised network, trained
on just 3 poses of Deadpool; Correspondences calculated
using a supervised network, trained on FAUST synthetic
human dataset (80 shapes); Correspondences calculated us-
ing the purely axiomatic method of functional maps with
SHOT descriptors. Note that only the axiomatic results are
refined using PMF, while for the former we show the raw
network predictions. Corresponding points are assigned the
same color.

thetic Faust train-set, when applied on the test pairs. We
provided a visualization of the resulting correspondence for
intra-subject as well as for inter-subject test pairs. Due to
lack of space, we only included few visualizations. In Fig-
ure 2 we provide more visualizations.

4. Dynamic FAUST additional visualization
Section 5.4 of the main paper discusses the generaliza-

tion of our network, trained on the FAUST synthetic hu-
man dataset, on the recent Dynamic FAUST dataset [1]. As
demonstrated in Figure 8 of the original paper, when tested
on 256 test pairs comprising of 4 different subjects at 4 dif-
ferent poses, our method showed extremely good general-
ization results. Due to lack of space, we only included few
visualizations. In Figure 3 we show many more results via
texture transfer.
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Figure 2: Visualization of the calculated correspondences for synthetic Faust test pairs, illustrated by texture transfer ac-
cording to the estimated map. In each row, the first column shows the reference shape to which the remaining shapes are
matched.



Figure 3: Generalization of our network trained on synthetic Faust dataset to Dynamic FAUST [1], illustrated by texture
transfer according to the estimated map. In order to convert our method’s raw outputs to a bijection, results are refined using
PMF [4]. In each row, the first column shows the reference shape to which the remaining shapes are matched.


