
Supplementary Material for CVPR submission #4406

Ryuhei Hamaguchi, Ken Sakurada, and Ryosuke Nakamura
National Institute of Advanced Industrial Science and Technology (AIST)

{ryuhei.hamaguchi, k.sakurada, r.nakamura}@aist.go.jp

1. Introduction
This document presents the supplementary materials

omitted from the main paper due to the space limitation.
In Section 2, details about the WDC dataset are presented.
In Section 3, the detailed settings for the experiments in the
main paper are presented. In Section 4, the additional abla-
tion study is presented.

2. WDC dataset
In this dataset, we consider a more realistic applica-

tion where we want to find rare events from a large im-
age archives such as satellite images or street view images.
To evaluate our method on such applications, we created a
new large-scale dataset for detecting newly constructed or
destructed buildings in Washington D.C. area from a large
archive of aerial images taken in 1995 through 2015.

2.1. Source data and annotations

For the WDC dataset, we acquired the aerial images and
the building footprints of Washington D.C. area from open
data repository hosted by the Government of District of
Columbia [6]. We used the aerial images taken in 1995,
1999, 2002, 2005, 2008, 2010, 2013 and 2015. The im-
ages have 16 cm resolution, and covers over 200km2 for
each year. We automatically annotated changes in buildings
by comparing the building footprints produced at different
years. Specifically, for each building, we computed IoU be-
tween footprints of different years, and annotated the build-
ings as newly constructed or destructed if the IoU < 0.01.
We conducted the annotation using the footprint pairs of
1999 and 2005, and of 2010 and 2015. Although the build-
ing footprints are provided for other years, we find that the
difference between them includes many buildings that are
missed in the previous year’s survey. Because they are not
the true change, we decided not to use the footprints.

2.2. Patch pairs for training and evaluation

First, we paired off with the aerial images that are close
to each other in their acquisition year. From the image pairs,
we cropped a large amount of noisy negative patch pairs and

a small amount of purely negative and purely positive patch
pairs. The purely negative and purely positive patch pairs
are created from the change annotations. The noisy negative
patch pairs are randomly cropped from all the image pairs
available regardless of the existence of the change annota-
tion. Because our targets are rare events, such random sam-
ples are almost negative except accidentally cropped posi-
tives. The noisy negative samples are used to train our rep-
resentation learning model. Note that the training is fully
unsupervised because creating noisy negative samples re-
quires no labels. Then, a part of purely negative and purely
positive samples are used for fine-tuning the change clas-
sifier, and the rest of samples are used for evaluating the
model performance.

2.3. Filtering patches using building footprint

Since the source aerial images include large areas with-
out buildings, randomly cropped patches rarely contain
buildings. In order to put more attention to buildings, we
used the building footprint of 2015 as side information to
filter out patches that are not containing buildings. Specifi-
cally, we controlled the ratio of patches containing and not
containing buildings as 9:1.

3. Hyperparameter settings
In the experiments, we used two encoder architectures

for the proposed method: one is for Augmented MNIST
(Enc-MNIST) and the other is for ABCD, PCD, and WDC
datasets (Enc-VGG). Table 1 shows the detailed architec-
tures of the encoders. The decoders are set as symmetric to
the encoders by replacing convolution with deconvolution
and subsampling with upsampling. For fair comparisons
in terms of network capacity, we basically used the same
encoder architectures for the baseline models so that they
have the same capacity in fine-tuning phase (see Table 2).
As an exception, we needed to use the specific architecture
for the model of mathieu et al. [4], in order to stabilize the
GAN training. Specifically, we modified the Enc-MNIST
by inserting instance normalization after every convolution.
Moreover, for ABCD, PCD and WDC datasets, we used
DCGAN-based architecture.



Table 1. Encoder architecture used for Augmented MNIST (Enc-
MNIST), and for ABCD, PCD, and WDC dataset (Enc-VGG). The
Enc-VGG is based on VGG-16 [5]. Several layers in the encoders
have connections to the hidden layers as listed in the 5th column of
the table (“Hidden”). For example, “H1” in the column represents
connection to the operation “Conv(H1)”. The bottom part of the
table shows the architectures of hidden layers, where the number
of common and specific features are shown in the second column
(“#Features”)

(a) Enc-MNIST
Operations #Features Kernel size Stride hidden Spatial dimensions

Conv-ReLU 20 5× 5 1 - 24
Max-pool 20 2× 2 2 - 12

Conv-ReLU 50 5× 5 1 - 8
Max-pool 50 2× 2 2 - 4

Conv-ReLU 500 5× 5 1 H1 1
Conv(H1) c,s=(20, 10) 1× 1 1 - 1

(b) Enc-VGG
Operations #Features Kernel size Stride Hidden Spatial dimensions

Conv-ReLU 64 3× 3 1 - 128
Conv-ReLU 64 3× 3 1 H1 128
Max-pool 64 2× 2 2 - 64

Conv-ReLU 128 3× 3 1 - 64
Conv-ReLU 128 3× 3 1 H2 64
Max-pool 128 2× 2 2 - 32

Conv-ReLU 256 3× 3 1 - 32
Conv-ReLU 256 3× 3 1 - 32
Conv-ReLU 256 3× 3 1 H3 32
Max-pool 256 2× 2 2 - 16

Conv-ReLU 512 3× 3 1 - 16
Conv-ReLU 512 3× 3 1 - 16
Conv-ReLU 512 3× 3 1 H4 16
Max-pool 512 2× 2 2 - 8

Conv-ReLU 1024 7× 7 1 - 2
Conv-ReLU 1024 1× 1 1 H5 2
Conv(H1) c,s=(0,32) 64× 64 1 - 65
Conv(H2) c,s=(0,32) 32× 32 1 - 33
Conv(H3) c,s=(0,32) 16× 16 1 - 17
Conv(H4) c,s=(16,16) 8× 8 1 - 9
Conv(H5) c,s=(16,16) 1× 1 1 - 2

Table 2. Encoder architectures used for each model.
Aug. MNIST ABCD, PCD, WDC

Under samp. Enc-MNIST Enc-VGG
Over samp. Enc-MNIST Enc-VGG

Transfer Enc-MNIST Enc-VGG
MLVAE [1] Enc-MNIST Enc-VGG, one hidden

Mathieu et al. [4] Enc-MNIST with instance norm. DCGAN based
VAE w/o Sim. Enc-MNIST Enc-VGG

VAE w/ Sim. (ours) Enc-MNIST Enc-VGG

For the experiments on Augmented MNIST, Adam [3]
was used for optimization with an initial learning rate of
1.0e-3. A coefficient of weight decay term was set to 5.0e-4.
All models were trained for 30 epochs using a batch size of
100. λ1 and λ2 were both set to 1, and a sparsity parameter
of 0.5 was used.

For the experiments on ABCD, PCD, and WDC datasets,
Adam optimizer was used for optimization with an initial
learning rate of 1.0e-4. The learning rate decayed linearly
with the number of epochs. A coefficient of weight de-
cay term was set to 5.0e-4. All models were trained for
30 epochs using a batch size of 50. λ1 was set to 10, and
λ2 was set to 1. We also used the KL annealing technique
[2], which gradually ascend the coefficient on the KL di-
vergence term in the VAE loss function. The weight was

Table 3. Sensitivity analysis of the kernel size of hidden layers.
Kernel size

H1 H2 H3 H4 H5 Acc.
64 32 16 8 1 90.01(1.39)
32 32 16 8 1 89.35(1.86)
16 16 16 8 1 89.36(1.36)
8 8 8 8 1 88.79(1.33)
3 3 3 3 1 88.29(2.26)

gradually increased during training from 0 to 1.

4. Ablation Study: kernel size for hidden layers
In Table 3, we demonstrated a sensitivity analysis on the

kernel size of the hidden layers. The result shows that the
performance improves when we use larger kernels at the
lower layers. This result can be explained as follows: fea-
ture maps in lower layers somewhat retain raw information
from the input. If we use a small kernel in lower hidden
layers, the spatial information is almost all retained, which
enables the model to easily reconstruct input images. When
the model can reconstruct inputs by using only lower hidden
layers, higher layers cannot receive sufficient error signals
and the training will be stacked. On the other hand, if we
use large kernels, the convolution operation becomes close
to fully connected, which promotes abstraction of the hid-
den variables.
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(a) Positive samples (b) Negative samples

Figure 1. Examples of positive pairs and negative pairs in ABCD dataset.

Figure 2. Examples of original image pairs in PCD dataset.

(a) Positive samples (b) Negative samples

Figure 3. Examples of positive pairs and negative pairs cropped from image pairs in PCD dataset.
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Figure 4. Source aerial images of Washington D.C. area.
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Figure 5. Example of aerial images, building footprints and change labels for WDC dataset. The change label on the right is created by
comparing building footprints of 2015 and 2010.

(a) Positive samples (b) Negative samples

Figure 6. Examples of purely positive pairs and noisy negative pairs in WDC dataset.


