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1. Numerical solution for ODEs

In this section, we briefly revisit the numerical methods
of ODEs for those who are not familiar with it, including
Leapfrog method and Runge-Kutta method that we used to
develop the CNN blocks.

1.1. Leapfrog method

First, we reformulate the initial value problem of the fol-
lowing first-order differential equation
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Consider the second-degree Taylor polynomial approxima-

tion at x,,
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where h is the step size, , < &1 < Tpi1, Tpno1 < &2 <
Zy. Sustract (3) from (2), drop the higher order term and
make use of (1), we will obtain the Leapfrog scheme

Yn+1 = Yn—-1 + th(xna yn) (4)

The local truncation error is O(h?), while the total error will
be accumulated to O(h?). Therefore, Leapfrog is a second-
order method.

1.2. Runge-Kutta method
2-stage Runge-Kutta: We use the trapezoid formula to

approximate ¥, 41
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However, we have no knowledge of the exact value of ,,41,
thus we turn to the first-order approximation

Yn+1 = Yp + hf(xnayn) (6)

These formulas can be rewritten into a 2-stage Runge-Kutta
scheme

1
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The local truncation error is O(h?), and it is a second-order
scheme which is also known as Heun’s method.

Runge-Kutta family: Arbitray s (a positive integer)
stage Runge-Kutta method takes the form

Ynt+1 = Yn + Z%Gi’ (19)
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(we recommend [1] for further readings). As shown above,
Runge-Kutta schemes make use of multiple steps to im-
prove approximation accuracy. The coefficient «, 3,y can
be determined by Taylor series. Here, we take s = 3 as
an example, which is the same case we used to develop
RK3-block. First we reformulate the 3-stage Runge-Kutta
scheme

Ynt1 = Yn +11G1 + 72G2 + 713G, (11)
G = hf(l'nyyn)a (12)
G2 = hf(x, + ash,yn + 21G1), (13)

Gz = hf(xn + ash,yn + B31G1 + [32G2).  (14)



For the sake of clarity, we omit the variable in the deriva-
tives. Consider the Taylor expansion of y(z) for Go at
(Zn, yn), drop the higher-order terms and substitue G; with
formula (12), we have

G2 = h[f + (ashfs + Barhf fy) (15)
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Similarly, we obtain
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Note that we have dropped the O(h*) term, then cosider the
derivatives of y at x,,
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Use the Taylor expansion

2 3
Yo = vy @bt oy )+ ey )+ OGRY),

(20)
and compare the coefficients of (11) and (20), we have the
following equations

Mm+y+y=1, (21)
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The solution is not unique. In our designs, we take
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Ba1 = 57531 =—1,032 =2,
1

Qg = 5,0&321,

which is also known as Kutta’s method. Since we have
dropped the term with order higher than O(h*), the local
truncation error is (’)(h4), i.€., a third-order method.

2. Dynamical system

In this section, we briefly revisit the concept of dynami-
cal system used in this paper. Here we adopt the definition
in [2]. Generally speaking, a dynamical system is a monoid
G acting on a set M. More precisely, there is a map

d:Gx MM (23)
(9,2) = Py4(z) (24)

for Vg, t € G and the identity element e € G, satisfies

Q0P =Dy, P.=7T. (25)
In the semantics of SISR, ®;(z) can be granted as a map
from the input sample x to the output high-resolution im-
age through time ¢, since we regard ¢ as the element of G.
When ¢ = 0, &g(z) = z is an identity mapping, then we
would like to approach ®;(x) through an ODE (e.g. formu-
la (1)) and interprete it as a CNN. In order to achieve this
process, we design finer CNN blocks and choose appropri-
ate t, which is corresponded to block numbers (detailed in
Table 1).

Table 1. Residual blocks with their correpsonding numerical meth-
ods. This table lists the performance on DIV2K validation set
and shows the impact of different numerical schemes. For a fair
comparsion, we set the number of multiply-accumulate operations
(MAC) and parameters of our methods to be the same as EDSR-
baselines.

Scale Method PSNR Numerical Method G
x2 EDSR 34.61 Forward Euler Original
x2 LF  34.67 Leapfrog v2
x2 RK2 34.63 Second-order Runge-Kuta v3
x3 EDSR 30.92 Forward Euler Original
%3 LF  30.98 Leapfrog v2
x3  RK2 30.94 Second-order Runge-Kuta v3
x4 EDSR 28.95 Forward Euler Original
x4 LF  29.02 Leapfrog v2
x4 RK2 28.99 Second-order Runge-Kuta v3
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