Supplementary Material: ODE-inspired Network Design for Single Image
Super-Resolution

Xiangyu He'"?*, Zitao Mo'?*, Peisong Wang!, Yang Liu*, Mingyuan Yang*, Jian Cheng!:?3 X
L NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China
3 Center for Excellence in Brain Science and Intelligence Technology, CAS, Beijing, China
4 Alibaba Group, Hangzhou, China

{xiangyu.he, zitao.mo, peisong.wang, jcheng}@nlpr.ia.ac.cn

1. Numerical solution for ODEs

In this section, we briefly revisit the numerical methods
of ODEs for those who are not familiar with it, including
Leapfrog method and Runge-Kutta method that we used to
develop the CNN blocks.

1.1. Leapfrog method

First, we reformulate the initial value problem of the fol-
lowing first-order differential equation

dy
a - f (I) y)7
Consider the second-degree Taylor polynomial approxima-

tion at x,,

y(xo0) = Yo (D

h2 1
Y(Tni1) = y(zn) + hy'(zn) + gy”(xn) + gy'"(fl),

(2)
/ 2 12]‘ m
Y(@n—1) = y(@n) = ' (2n) + 5ry" (@n) = 5757 (&2),
(3)
where h is the step size, , < &1 < Tpi1, Tpno1 < &2 <
Zy. Sustract (3) from (2), drop the higher order term and
make use of (1), we will obtain the Leapfrog scheme

Yn+1 = Yn—-1 + th(xna yn) (4)

The local truncation error is O(h?), while the total error will
be accumulated to O(h?). Therefore, Leapfrog is a second-
order method.

1.2. Runge-Kutta method
2-stage Runge-Kutta: We use the trapezoid formula to

approximate ¥, 41

h
Yn+1 = Yn + 5[.]0(3/‘71,7 yn) + f(xn-‘rla yn—i-l)]- (5)

*These authors contributed equally to this work.

However, we have no knowledge of the exact value of ,,41,
thus we turn to the first-order approximation

Yn+1 = Yp + hf(xnayn) (6)

These formulas can be rewritten into a 2-stage Runge-Kutta
scheme

1
Yn+1 = Yn + i(Gl + G2)a @)
G1=hf(zn,yn),)]

The local truncation error is O(h?), and it is a second-order
scheme which is also known as Heun’s method.

Runge-Kutta family: Arbitray s (a positive integer)
stage Runge-Kutta method takes the form

Ynt+1 = Yn + Z%Gi’ (19)
i=1
G, = hf($n7yn)a
1—1
Gi = hf(rn + aih,yn + Zﬁz‘jGj)

j=1

(we recommend [1] for further readings). As shown above,
Runge-Kutta schemes make use of multiple steps to im-
prove approximation accuracy. The coefficient «, 3,y can
be determined by Taylor series. Here, we take s = 3 as
an example, which is the same case we used to develop
RK3-block. First we reformulate the 3-stage Runge-Kutta
scheme

Ynt1 = Yn +11G1 + 72G2 + 713G, (11)
G = hf(l'nyyn)a (12)
G2 = hf(x, + ash,yn + 21G1), (13)

Gz = hf(xn + ash,yn + B31G1 + [32G2). (14)

For the sake of clarity, we omit the variable in the deriva-
tives. Consider the Taylor expansion of y(z) for Go at
(Zn, yn), drop the higher-order terms and substitue G; with
formula (12), we have

G2 = h[f + (ashfs + Barhf fy) (15)
+ (03 Faw + By + 20060 fuy PN
= et (0nfs + B fy A

1)
+ i(agfrr + ﬂ§1f2fyy + 20‘2521fmyf)h3~
Similarly, we obtain

Gs = fh+ (asfe + Ba1ffy + Baafy f)I? (16)
+ (Brafyanfe + Barfu)+ 20812 + (B S

+ B3 2 + 2831 B32f2) + 203 (B31 f fuy + Baaf fuy)] J1°.

Note that we have dropped the O(h*) term, then cosider the
derivatives of y at x,,

dy(xn) . _

290) — fan,) =, (17)
Py(z,) df (@n,yn)

W) ACnt) _ gt gy, (1)
) p bt St fufy 4 £2. (19)

Use the Taylor expansion

2 3
Yo = vy @bt oy)+ ey)+ OGRY),

(20)
and compare the coefficients of (11) and (20), we have the
following equations

Mm+y+y=1, (21)

1
Y2021 + 73(B31 + Ba2) = 3

1
Yoo + Y33 = >
1
Vo0 + Y303 = 3
1
’72531 + 73(63?1 + 5§2 + 2ﬁ31532) = ga
1
o f330y3 = 5’
1
B21832773 = 67

1
azf2172 + a3(f31 + B32)y3 = 3

The solution is not unique. In our designs, we take

1 2 1

71 6/}/2 37’)/3 67 ()
1

Ba1 = 57531 =—1,032 =2,
1

Qg = 5,0&321,

which is also known as Kutta’s method. Since we have
dropped the term with order higher than O(h*), the local
truncation error is (’)(h4), i.€., a third-order method.

2. Dynamical system

In this section, we briefly revisit the concept of dynami-
cal system used in this paper. Here we adopt the definition
in [2]. Generally speaking, a dynamical system is a monoid
G acting on a set M. More precisely, there is a map

d:Gx MM (23)
(9,2) = Py4(z) (24)

for Vg, t € G and the identity element e € G, satisfies

Q0P =Dy, P.=7T. (25)
In the semantics of SISR, ®;(z) can be granted as a map
from the input sample x to the output high-resolution im-
age through time ¢, since we regard ¢ as the element of G.
When ¢ = 0, &g(z) = z is an identity mapping, then we
would like to approach ®;(x) through an ODE (e.g. formu-
la (1)) and interprete it as a CNN. In order to achieve this
process, we design finer CNN blocks and choose appropri-
ate t, which is corresponded to block numbers (detailed in
Table 1).

Table 1. Residual blocks with their correpsonding numerical meth-
ods. This table lists the performance on DIV2K validation set
and shows the impact of different numerical schemes. For a fair
comparsion, we set the number of multiply-accumulate operations
(MAC) and parameters of our methods to be the same as EDSR-
baselines.

Scale Method PSNR Numerical Method G
x2 EDSR 34.61 Forward Euler Original
x2 LF 34.67 Leapfrog v2
x2 RK2 34.63 Second-order Runge-Kuta v3
x3 EDSR 30.92 Forward Euler Original
%3 LF 30.98 Leapfrog v2
x3 RK2 30.94 Second-order Runge-Kuta v3
x4 EDSR 28.95 Forward Euler Original
x4 LF 29.02 Leapfrog v2
x4 RK2 28.99 Second-order Runge-Kuta v3

References

[1] R. L. Burden and J. D. Faires. Numerical analysis. Cengage
Learning, 9, 2010.

[2] G. Teschl. Ordinary differential equations and dynamical sys-
tems, volume 140. American Mathematical Soc., 2012.

