
Supplementary Material: ODE-inspired Network Design for Single Image
Super-Resolution

Xiangyu He1,2∗, Zitao Mo1,2∗, Peisong Wang1, Yang Liu4, Mingyuan Yang4, Jian Cheng1,2,3 �
1 NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China

2 University of Chinese Academy of Sciences, Beijing, China
3 Center for Excellence in Brain Science and Intelligence Technology, CAS, Beijing, China

4 Alibaba Group, Hangzhou, China
{xiangyu.he, zitao.mo, peisong.wang, jcheng}@nlpr.ia.ac.cn

1. Numerical solution for ODEs
In this section, we briefly revisit the numerical methods

of ODEs for those who are not familiar with it, including
Leapfrog method and Runge-Kutta method that we used to
develop the CNN blocks.

1.1. Leapfrog method

First, we reformulate the initial value problem of the fol-
lowing first-order differential equation

dy
dx

= f(x, y), y(x0) = y0. (1)

Consider the second-degree Taylor polynomial approxima-
tion at xn

y(xn+1) = y(xn) + hy′(xn) +
h2

2!
y′′(xn) +

1

3!
y′′′(ξ1),

(2)

y(xn−1) = y(xn)− hy′(xn) +
h2

2!
y′′(xn)− 1

3!
y′′′(ξ2),

(3)

where h is the step size, xn < ξ1 < xn+1, xn−1 < ξ2 <
xn. Sustract (3) from (2), drop the higher order term and
make use of (1), we will obtain the Leapfrog scheme

yn+1 = yn−1 + 2hf(xn, yn). (4)

The local truncation error isO(h3), while the total error will
be accumulated to O(h2). Therefore, Leapfrog is a second-
order method.

1.2. Runge-Kutta method

2-stage Runge-Kutta: We use the trapezoid formula to
approximate yn+1

yn+1 = yn +
h

2
[f(xn, yn) + f(xn+1, yn+1)]. (5)

∗These authors contributed equally to this work.

However, we have no knowledge of the exact value of yn+1,
thus we turn to the first-order approximation

yn+1 ≈ yn + hf(xn, yn). (6)

These formulas can be rewritten into a 2-stage Runge-Kutta
scheme

yn+1 = yn +
1

2
(G1 +G2), (7)

G1 = hf(xn, yn), (8)
G2 = hf(xn + h, yn +G1). (9)

The local truncation error isO(h3), and it is a second-order
scheme which is also known as Heun’s method.

Runge-Kutta family: Arbitray s (a positive integer)
stage Runge-Kutta method takes the form

yn+1 = yn +

s∑
i=1

γiGi, (10)

G1 = hf(xn, yn),

Gi = hf(xn + αih, yn +

i−1∑
j=1

βijGj)

(we recommend [1] for further readings). As shown above,
Runge-Kutta schemes make use of multiple steps to im-
prove approximation accuracy. The coefficient α, β, γ can
be determined by Taylor series. Here, we take s = 3 as
an example, which is the same case we used to develop
RK3-block. First we reformulate the 3-stage Runge-Kutta
scheme

yn+1 = yn + γ1G1 + γ2G2 + γ3G3, (11)
G1 = hf(xn, yn), (12)
G2 = hf(xn + α2h, yn + β21G1), (13)
G3 = hf(xn + α3h, yn + β31G1 + β32G2). (14)



For the sake of clarity, we omit the variable in the deriva-
tives. Consider the Taylor expansion of y(x) for G2 at
(xn, yn), drop the higher-order terms and substitue G1 with
formula (12), we have

G2 = h[f + (α2hfx + β21hffy) (15)

+
1

2
(α2

2fxx + β2
21f

2fyy + 2α2β21fxyf)h2]

= fh+ (α2fx + β21fyf)h2

+
1

2
(α2

2fxx + β2
21f

2fyy + 2α2β21fxyf)h3.

Similarly, we obtain

G3 = fh+ (α3fx + β31ffy + β32fyf)h2 (16)

+ {β32fy(α2fx + β21fyf) +
1

2
[α2

3f
2
xx + (β2

31f
2

+ β2
32f

2 + 2β31β32f
2) + 2α3(β31ffxy + β32ffxy)]}h3.

Note that we have dropped theO(h4) term, then cosider the
derivatives of y at xn

dy(xn)

dxn
= f(xn, yn) = f, (17)

d2y(xn)

dx2n
=

df(xn, yn)

dxn
= fx + fyf, (18)

d3y(xn)

dx3n
= fxx + 2ffxy + fyyf

2 + fxfy + f2y f. (19)

Use the Taylor expansion

yn+1 = yn + y′(xn)h+
h2

2
y′′(xn) +

h3

6
y′′′(xn) +O(h4),

(20)
and compare the coefficients of (11) and (20), we have the
following equations

γ1 + γ2 + γ3 = 1, (21)

γ2β21 + γ3(β31 + β32) =
1

2
,

γ2α2 + γ3α3 =
1

2
,

γ2α
2
2 + γ3α

2
3 =

1

3
,

γ2β
2
21 + γ3(β2

31 + β2
32 + 2β31β32) =

1

3
,

α2β32γ3 =
1

6
,

β21β32γ3 =
1

6
,

α2β21γ2 + α3(β31 + β32)γ3 =
1

3
.

The solution is not unique. In our designs, we take

γ1 =
1

6
, γ2 =

2

3
, γ3 =

1

6
, (22)

β21 =
1

2
, β31 = −1, β32 = 2,

α2 =
1

2
, α3 = 1,

which is also known as Kutta’s method. Since we have
dropped the term with order higher than O(h4), the local
truncation error is O(h4), i.e., a third-order method.

2. Dynamical system

In this section, we briefly revisit the concept of dynami-
cal system used in this paper. Here we adopt the definition
in [2]. Generally speaking, a dynamical system is a monoid
G acting on a set M . More precisely, there is a map

Φ : G ×M →M (23)
(g, x) 7→ Φg(x) (24)

for ∀g, t ∈ G and the identity element e ∈ G, satisfies

Φg ◦ Φt = Φg◦t, Φe = I. (25)

In the semantics of SISR, Φt(x) can be granted as a map
from the input sample x to the output high-resolution im-
age through time t, since we regard t as the element of G.
When t = 0, Φ0(x) = x is an identity mapping, then we
would like to approach Φt(x) through an ODE (e.g. formu-
la (1)) and interprete it as a CNN. In order to achieve this
process, we design finer CNN blocks and choose appropri-
ate t, which is corresponded to block numbers (detailed in
Table 1).

Table 1. Residual blocks with their correpsonding numerical meth-
ods. This table lists the performance on DIV2K validation set
and shows the impact of different numerical schemes. For a fair
comparsion, we set the number of multiply-accumulate operations
(MAC) and parameters of our methods to be the same as EDSR-
baselines.

Scale Method PSNR Numerical Method G

×2 EDSR 34.61 Forward Euler Original
×2 LF 34.67 Leapfrog v2
×2 RK2 34.63 Second-order Runge-Kuta v3
×3 EDSR 30.92 Forward Euler Original
×3 LF 30.98 Leapfrog v2
×3 RK2 30.94 Second-order Runge-Kuta v3
×4 EDSR 28.95 Forward Euler Original
×4 LF 29.02 Leapfrog v2
×4 RK2 28.99 Second-order Runge-Kuta v3



References
[1] R. L. Burden and J. D. Faires. Numerical analysis. Cengage

Learning, 9, 2010.
[2] G. Teschl. Ordinary differential equations and dynamical sys-

tems, volume 140. American Mathematical Soc., 2012.


