Supplement: Constrained Generative Adversarial Networks for Interactive
Image Generation

Eric Heim

Air Force Research Laboratory
Information Directorate

Rome, NY USA

eric.heim.l@us.af.mil

1. Formal Definition of LSTM Component
Equation (4) is a standard LSTM cell:

LSTM (z,q;_,) = o, * tanh (h;) , where
op=o0 (wo . [qfﬁl,z] + bo)
hy =fxh,_y +i; +hy
fi=0 (wf . [qz‘_l,z} + bf)
=0 (wi . [q;hz] + bi)
h; = tanh (Wi, - [aj_1.2] +by)

Here, z is used as what is commonly referred to as “input”
to the LSTM, q;_, is commonly called the “hidden state” of
the previous iteration, and LST M returns the hidden state
of the current iteration.

2. Neural Network Architectures used in Ex-
periments

In this section, we outline the neural network architec-
ture used in all experiments in the main paper, layer by
layer. Rows of the network in descending order (top to bot-
tom) indicate layers from input to ouput. The following
naming conventions are used throuout. “Conv” indicates a
convolutional layer, “FC” indicates a fully connected layer,
and “TConv” indicates a transpose convolutional layer. The
column labeled “Ker” indicates the kernel size, “Str” indi-
cates stride, and “Act” indicates the activation function used.
Columns labeled “In” and “Out” indicate the shape of the
input to the layer and shape of the output of the layer.

2.1. MNIST Experiments

Below you will find architecture descriptions for the net-
works used in the MNIST experiments. Note that after each
two convolutional or transpose convolutional layers in all
networks, layer normalization is used.

¢ Network (Encoder)
Layer | In Ker | Str | Act Out
Conv 32x32x1 | 3x3 | 1 RelLU | 32x32x4
Conv 32x32x4 | 3x3 | 2 ReLU | 16x16x8
Conv 16x16x8 | 3x3 | 2 ReLU | 8x8x16
Conv 8x8x16 3x3 | 2 ReLU | 4x4x32
Conv 4x4x32 3x3 | 2 RelLU | 2x2x64
FC 2x2x64 None | 2

¢ Network (Decoder)
Layer | In Ker | Str | Act Out
FC 2 None | 2x2x64
TConv | 2x2x64 3x3 | 2 RelLU | 4x4x32
TConv | 4x4x32 3x3 | 2 ReLU | 8x8x16
TConv | 8x8x16 3x3 | 2 ReLU | 16x16x8
TConv | 16x16x8 | 3x3 | 2 RelLU | 32x32x4
Conv 32x32x4 | 3x3 | 1 tanh 32x32x1

Discriminator Network (WGAN and CONGAN)

Layer | In Ker | Str | Act Out
Conv 32x32x1 3x3 | 1 RelLU | 32x32x64
Conv 32x32x64 3x3 | 2 RelLU | 16x16x128
Conv 16x16x128 | 3x3 | 2 ReLU | 8x8x256
Conv 8x8x256 3x3 | 2 RelLU | 4x4x512
FC 4x4x512 None | 1
Read CNN
Layer | In Ker | Str | Act Out
Conv 32x32x1 | 5x5 | 1 ReLU | 32x32x2
Conv 32x32x2 | 5x5 | 2 ReLU | 16x16x4
Conv 16x16x4 | 5x5 | 2 ReLU | 8x8x8
Conv 8x8x8 5x5 | 2 ReLU | 4x4x16
Conv 4x4x16 5x5 | 2 RelLU | 2x2x32
FC 2x2x32 tanh 64

Residual Block (Down)

CONGAN Write Network/WGAN Generator ID | Layer | In Ker | Str | Act Out
Layer | In Ker | Str | Act Out 1 Conv | axbxc | 5x5 None %x%xd
FC 64 None | 4x4x512 2 | Conv | axbxc | 5x5 |1 None | axbxc
TConv | 4x4x512 3x3 | 2 ReLU | 8x8x256 3 Norm | (2)

Conv 8x8x256 3x3 | 1 ReLU | 8x8x256 4 ReLU | (3)
TConv | 8x8x256 3x3 2 ReLLU 16x16x128 5 Conv “4) 5x5 2 None %ngd
Conv 16x16x128 | 3x3 | 1 RelLU | 16x16x128 6 Add 3), (D
TConv | 16x16x128 | 3x3 | 2 ReLU | 32x32x64 7 Norm | (6)
Conv 32x32x64 3x3 | 1 tanh 32x32x1 8 ReLU | (7)
2.2. CelebA and Zappos50K Experiments Residual Block (Up)

In this section, we first describe all network architectures ID | Layer | In Ker | Str | Act | Out
used in both the CelebA and Zappos50K experiments. Then 1 TConv | axbxe | 5x5 | 2 None | (2xa)x
we outline the ¢ networks used for each. Here, “Norm” (2% b)x
indicates layer norm, “ReLLU” indicates the application of d
a rectified linear unit. The “ID” column is used to identify 2 Conv axbxe | 5x5 | 1 None | axbxc
which layers are used in subsequent operations in the residual 3 | Norm | (2)
block. For the residual blocks, the “In” column is either used 4 | ReLU | (3)
to indicate the size of the input or the IDs of the layers used 5 TConv | (4) 5x5 | 2 None | (2 xa)x
as input. The “Add” layers are simply the addition of the (2% b)x
two layers identified in the “In” column with the first ID d
multiplied by 0.3 before the addition. The “RB1” layer is a 6 | Add (5), (1)
residual block up and “RBJ” is a residual block down. 7 Norm | (6)

8 ReLU | (7)

Discriminator Network
Layer | In Ker | Str | Act Out
Conv 64x64x3 3x3 | 1 RelLU | 64x64x64
RBJ 64x64x64 32x32x128
RBJ 32x32x128 16x16x256
RBJ 16x16x256 8x8x512
RBJ 8x8x512 4x4x512
FC 4x4x512 None 1

Read CNN

Layer | In Ker | Str | Act Out
Conv 64x64x3 3x3 | 1 RelLU | 64x64x8
RBJ 64x64x8 32x32x16
RBJ 32x32x16 16x16x32
RBJ 16x16x32 8x8x32
FC 8x8x32 tanh 1

CONGAN Write Network/ WGAN Generator

Layer | In Ker | Str | Act Out

FC 128 ReLU | 4x4x512
RB?T 4x4x512 8x8x512
RBT 8x8x512 16x16x256
RB? 16x16x256 32x32x128
RBT 32x32x128 64x64x64
Conv | 64x64x64 3x3 | 1 tanh 64x64x3

2.3. Celeba ¢ MCNN

The MCNN we developed for the ¢ network in our
CelebA experiments takes an image, and puts it through
a “base” network. Then the output of the base network is in-
put to twelve“specialized” networks to predict the presence
or absence of each of the twelve attributes we used in our
experiment. Each of these architectures are outlined below.

¢ MCNN Network (Base)
Layer | In Ker | Str | Act Out
Conv | 64x64x3 7x7 | 2 ReLU | 32x32x64
Conv | 32x32x64 | 5x5 | 2 ReLU | 16x16x128
Norm

¢ MCNN Network (Specialized)

Layer | In Ker | Str | Act Out
Conv 16x16x128 | 3x3 | 2 ReLU | 8x8x256
Conv 8x8x256 3x3 | 2 RelLU | 4x4x512
Norm

Conv 4x4x512 3x3 | 2 RelLU | 2x2x1024
FC 2x2x1024 sigm 1

N

Figure 1: The read network to map a constraint to a vector.

Figure 2: Illustration of the tth iteration of the process net-
work, beginning with the LSTM unit and ending with g; .

2.4. Zappos50K ¢ Triplet Network

A triplet network takes three images and puts them
through the same network resulting in an n dimensional
embedding for which standard triplet losses can be applied.
Below describes the network we used in our Zappos50K
experiments. Note that after each two convolutional layers,
layer normalization is applied.

¢ Triplet Network
Layer | In Ker | Str | Act Out
Conv 64x64x3 5x5 | 1 ReLU | 64x64x8
Conv | 64x64x8 5x5 | 2 RelLU | 32x32x8
Conv 32x32x8 5x5 | 1 ReLU | 32x32x16
Conv 32x32x16 | 5x5 | 2 RelLU | 16x16x16
Conv 16x16x16 | 5x5 | 1 ReLU | 16x16x32
Conv 16x16x32 | 5x5 | 2 ReLU | 8x8x32
Conv 8x8x32 5x5 | 1 ReLU | 8x8x64
Conv 8x8x64 5x5 | 2 RelLU | 4x4x64
FC 4x4x64 None | 2

3. CelebA ¢ MCNN Training Details and Per-
formance

For training the ¢ MCNN used in the CelebA data experi-
ments, we chose twelve attributes for the network to predict.
We used the Adam optimization method with default param-
eters, a batch size of 32, and trained the model for 100,000
iterations. The test accuracy of the network for the twelve

attributes is shown in the table below. We note that these
results are slightly worse than those reported in the original
paper, but sufficient for the CONGAN generator to learn
how to manipulate images. Performance can be increased
by employing the “aux” method described in the original
MCNN paper, and by designing the architecture to be take
advantage of groups of common attributes.

Attribute Accuracy
Bald 0.9836
Black Hair 0.8870
Blond Hair 0.9414
Brown Hair 0.8242
Eyeglasses 0.9901
Goatee 0.9531
Gray Hair 0.9709
Male 0.9760
Mustache 0.9557
No Beard 0.9360
Pale Skin 0.9601
Wearing Hat 0.9832

4. Zappos50K ¢ Triplet Network Training De-
tails and Performance

We formed the training set for the triplet network by first
taking each image in the Zappos50K train set, and placed
it into one of the 64 color histogram bins according their
highest histogram value. To form each triplet (A, B, C) (“A
is more similar to C than C”’), we iterated over each bin j,
selecting images A and B randomly from j, and image C
randomly from another bin. We iterated over each bin 5000
times creating 320,000 triplets for training. We did a similar
process for the test set, but with 1000 “passes” over each
bin,, making a test set of 64,000 triplets.

We trained the network using default Adam optimization
parameters and a batch size of 128. We found that loss
leveled out around 25,000 steps and stopped optimization
at that point. Upon convergence, the network was able to
satisfy 94.504% of the test triplets. Figure 3 shows samples
of the Zappos50K data set embedded in two dimensions
using the ¢ triplet network.

-—

4

P

A

b :” 3 3]
EN & D” ol
A 4

|
A8

s

,Aﬁ\
s g ilIBE

S

4

S8

I

1

J

a5
- Q>
E o

£

y '\

Y
| 2

1
14
4

y
-) L v

e’

Figure 3: Samples from the Zappos50K data set embedded using the ¢ triplet network.

