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In this supplemental document, we describe the details
of our 3D-SIS network architecture in Section 1. In Sec-
tion 2, we describe our training scheme on scene chunks to
enable inference on entire test scenes, and finally, in Sec-
tion 3, we show additional evaluation on the ScanNet [1]
and SUNCG [3] datasets.

1. Network Architecture
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Table 1: Anchor sizes (in voxels) used for SUNCG [3] re-
gion proposal. Sizes are given in voxel units, with voxel
resolution of ≈ 4.69cm
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Table 2: Anchor sizes used for region proposal on the Scan-
Net dataset [1]. Sizes are given in voxel units, with voxel
resolution of ≈ 4.69cm

Table 3 details the layers used in our detection back-
bone, 3D-RPN, classification head, mask backbone, and
mask prediction. Note that both the detection backbone and
mask backbone are fully-convolutional. For the classifica-
tion head, we use several fully-connected layers; however,
due to our 3D RoI-pooling on its input, we can run our en-
tire instance segmentation approach on full scans of varying
sizes.

We additionally list the anchors used for the region
proposal for our model trained on the ScanNet [1] and
SUNCG [3] datasets in Tables 2 and 1, respectively. An-
chors for each dataset are determined through k-means clus-
tering of ground truth bounding boxes. The anchor sizes are
given in voxels, where our voxel size is ≈ 4.69cm.

2. Training and Inference

In order to leverage as much context as possible from
a input RGB-D scan, we leverage fully-convolutional de-
tection and mask backbones to infer instance segmentation
on varying-sized scans. To accommodate memory and ef-
ficiency constraints during training, we train on chunks of
scans, i.e. cropped volumes out of the scans, which we use
to generalize to the full scene at test time (see Figure 1).
This also enables us to avoid inconsistencies which can
arise with individual frame input, with differing views of
the same object; with the full view of a test scene, we can
more easily predict consistent object boundaries.

The fully-convolutional nature of our methods allows
testing on very large scans such as entire floors or build-
ings in a single forward pass; e.g., most SUNCG scenes are
actually fairy large; see Figure 2.

3. Additional Experiment Details

We additionally evaluate mean average precision on
SUNCG [3] and ScanNetV2 [1] using an IoU threshold
of 0.5 in Tables 5 and 4. Consistent with evaluation at
an IoU threshold of 0.25, our approach leveraging joint
color-geometry feature learning and inference on full scans
enables significantly better instance segmentation perfor-



layer name input layer type output size kernel size stride padding
geo 1 TSDF conv3d (32, 48, 24, 48) (2, 2, 2) (2, 2, 2) (0, 0, 0)
geo 2 geo 1 conv3d (32, 48, 24, 48) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 3 geo 2 conv3d (32, 48, 24, 48) (3, 3, 3) (1, 1, 1) (1, 1, 1)
geo 4 geo 3 conv3d (32, 48, 24, 48) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 5 geo 4 conv3d (32, 48, 24, 48) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 6 geo 5 conv3d (32, 48, 24, 48) (3, 3, 3) (1, 1, 1) (1, 1, 1)
geo 7 geo 6 conv3d (32, 48, 24, 48) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 8 geo 7 conv3d (64, 24, 12, 24) (2, 2, 2) (2, 2, 2) (0, 0, 0)
geo 9 geo 1 conv3d (32, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 10 geo 2 conv3d (32, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
geo 11 geo 3 conv3d (64, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 12 geo 4 conv3d (32, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 13 geo 5 conv3d (32, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
geo 14 geo 6 conv3d (64, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
color 1 projected 2D features conv3d (64, 48, 24, 48) (2, 2, 2) (2, 2, 2) (0, 0, 0)
color 2 color 1 conv3d (32, 48, 24, 48) (1, 1, 1) (1, 1, 1) (0, 0, 0)
color 3 color 2 conv3d (32, 48, 24, 48) (3, 3, 3) (1, 1, 1) (1, 1, 1)
color 4 color 3 conv3d (64, 48, 24, 48) (1, 1, 1) (1, 1, 1) (0, 0, 0)
color 5 color 4 maxpool3d (64, 48, 24, 48) (3, 3, 3) (1, 1, 1) (1, 1, 1)
color 6 color 5 conv3d (64, 24, 12, 24) (2, 2, 2) (2, 2, 2) (0, 0, 0)
color 7 color 6 conv3d (32, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
color 8 color 7 conv3d (32, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
color 9 color 8 conv3d (64, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)

color 10 color 9 maxpool3d (64, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
concat 1 (geo 14, color 10) concat (128, 24, 12, 24) None None None

combine 1 concat 1 conv3d (128, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
combine 2 combine 1 conv3d (64, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
combine 3 combine 2 conv3d (64, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
combine 4 combine 3 conv3d (128, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
combine 5 combine 4 conv3d (64, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
combine 6 combine 5 conv3d (64, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
combine 7 combine 6 conv3d (128, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
combine 8 combine 7 maxpool3d (128, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)

rpn 1 combine 7 conv3d (256, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
rpn cls 1 rpn 1 conv3d (6, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)

rpn bbox 1 rpn 1 conv3d (18, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
rpn 2 combine 5 conv3d (256, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)

rpn cls 2 rpn 2 conv3d (22, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
rpn bbox 2 rpn 2 conv3d (66, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)

cls 1 combine 7 FC 128x4x4x4→ 256 None None None
cls 2 cls 1 FC 256→ 256 None None None
cls 3 cls 2 FC 256→ 128 None None None

cls cls cls 3 FC 128→ Ncls None None None
cls bbox cls 3 FC 128→ Ncls × 6 None None None
mask 1 TSDF conv3d (64, 96, 48, 96) (3, 3, 3) (1,1,1) (1,1,1)
mask 2 mask 1 conv3d (64, 96, 48, 96) (3, 3, 3) (1,1,1) (1,1,1)
mask 3 mask 2 conv3d (64, 96, 48, 96) (3, 3, 3) (1,1,1) (1,1,1)
mask 4 mask 3 conv3d (64, 96, 48, 96) (3, 3, 3) (1,1,1) (1,1,1)
mask 5 mask 4 conv3d (64, 96, 48, 96) (3, 3, 3) (1,1,1) (1,1,1)
mask 6 mask 5 conv3d (Ncls, 96, 48, 96) (1, 1, 1) (1,1,1) (0,0,0)

Table 3: 3D-SIS network architecture layer specifications.



Figure 1: 3D-SIS trains on chunks of a scene, and leverages fully-convolutional backbone architectures to enable inference
on a full scene in a single forward pass, producing more consistent instance segmentation results.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg
Seg-Cluster 10.4 11.9 15.5 12.8 12.4 10.1 10.1 10.3 0.0 11.7 10.4 11.4 0.0 13.9 17.2 11.5 14.2 10.5 10.8
Mask R-CNN [2] 11.2 10.6 10.6 11.4 10.8 10.3 0.0 0.0 11.1 10.1 0.0 10.0 12.8 0.0 18.9 13.1 11.8 11.6 9.1
SGPN [4] 10.1 16.4 20.2 20.7 14.7 11.1 11.1 0.0 0.0 10.0 10.3 12.8 0.0 0.0 48.7 16.5 0.0 0.0 11.3
Ours(geo only) 11.5 17.5 18.0 26.3 0.0 10.1 0.0 10.3 0.0 0.0 0.0 0.0 24.4 21.5 25.0 17.2 34.9 10.1 12.6
Ours(geo+1view) 12.5 15.0 17.8 23.7 0.0 19.0 0.0 11.0 0.0 0.0 10.5 11.1 13.0 19.4 22.5 14.0 40.5 10.1 13.3
Ours(geo+3views) 14.4 19.9 48.4 37.3 16.9 18.3 0.0 11.0 0.0 0.0 10.5 13.1 16.3 15.3 51.3 13.0 12.9 13.4 17.3
Ours(geo+5views) 19.7 37.7 40.5 31.9 15.9 18.1 0.0 11.0 0.0 0.0 10.5 11.1 18.5 24.0 45.8 15.8 23.5 12.9 18.7

Table 4: 3D instance segmentation on real-world scans from ScanNetV2 [1]. We evaluate the mean average precision with
IoU threshold of 0.5 over 18 classes. Our explicit leveraging of the spatial mapping between the 3D geometry and color
features extracted through 2D convolutions enables significantly improved instance segmentation performance.

cab bed chair sofa tabl door wind bkshf cntr desk shlf curt drsr mirr tv nigh toil sink lamp bath ostr ofurn oprop avg
Seg-Cluster 10.1 10.9 10.4 10.1 10.3 0.0 0.0 12.9 10.7 15.2 0.0 0.0 10.0 0 0.0 11.2 26.1 12.1 0 16.5 0 0 10 7.7
Mask R-CNN [2] 0.0 10.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.8 11.4 10.8 18.8 13.5 0.0 11.5 0.0 0.0 10.7 4.3
SGPN [4] 15.3 28.7 23.7 29.7 17.6 15.1 15.4 0.0 10.8 16.0 0.0 10.9 0.0 0.0 0.0 12.3 33.7 25.9 19.2 31.7 0.0 10.4 10.5 14.2
Ours(geo only) 12.6 60.5 38.6 45.8 21.8 16.8 0.0 0.0 10.0 18.5 10.0 0.0 14.0 0.0 0.0 14.9 64.2 30.8 17.6 35.2 10.0 0.0 16.9 19.1
Ours(geo+1view) 13.9 42.4 35.3 52.9 22 10 0.0 35.0 13.4 21.4 10.0 0.0 13.5 0.0 0.0 10.0 33.8 29.2 17.7 48.3 10.0 16.9 10.0 19.4
Ours(geo+3views) 15.4 58.5 35.5 34.5 24.4 16.6 0.0 20.0 10.0 17.6 10.0 0.0 24.3 0.0 10.0 10.0 34.6 28.5 15.6 40.7 10.0 24.9 15.5 19.8
Ours(geo+5views) 15.5 43.6 43.9 48.1 20.4 10.0 0.0 30.0 10.0 17.4 10.0 0.0 14.5 0.0 10.0 10.0 53.5 35.1 17.2 39.7 10.0 18.9 16.2 20.6

Table 5: 3D instance segmentation on synthetic scans from SUNCG [3]. We evaluate the mean average precision with IoU
threshold of 0.5 over 23 classes. Our joint color-geometry feature learning enables us to achieve more accurate instance
segmentation performance.

mance. We also submit our model the ScanNet Benchmark,
and we achieve the state-of-the-art in all three metrics.

We run an additional ablation study to evaluate the im-
pact of the RGB input and the two-level anchor design; see
Table. 6.

mAP@0.5 mAP@0.25
3D-SIS (only color-1view) 9.4 30.5
3D-SIS (only color-3view) 16.5 35.0
3D-SIS (only color-5view) 17.4 35.7
3D-SIS (only geometry) 16.0 27.6
3D-SIS (one anchor layer) 12.2 33.4

3D-SIS (final) 22.5 40.2

Table 6: Additional ablation study on ScanNetV2; combi-
nation of geometry and color signal complement each other,
thus achieving the best performance.

4. Limitations

While our 3D instance segmentation approach leverag-
ing joint color-geometry feature learning achieves marked
performance gain over state of the art, there are still several
important limitations. For instance, our current 3D bound-
ing box predictions are axis-aligned to the grid space of the
3D environment. Generally, it would be beneficial to ad-
ditionally regress the orientation for object instances; e.g.,
in the form of a rotation angle. Note that this would need
to account for symmetric objects where poses might be am-
biguous. At the moment, our focus is also largely on indoor
environments as we use commodity RGB-D data such as a
Kinect or Structure Sensor. However, we believe that the
idea of taking multi-view RGB-D input is agnostic to this



Figure 2: Our fully-convolutional architectures allows testing on a large SUNCG scene (45m x 45m) in about 1 second
runtime.

specific setting; for instance, we could very well see appli-
cations in automotive settings with LIDAR and panorama
data. Another limitation of our approach is the focus on
static scenes. Ultimately, the goal is to handle dynamic or at
least semi-dynamic scenes where objects are moving, which
we would want to track over time. Here, we see a significant
research opportunities and a strong correlation to tracking

and localization methods that would benefit from semantic
3D segmentation priors.
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