
A. Overview

We organize this supplemental material as follows. In

Section B, we provide more detailed experimental results.

In Section C, we describe the technical proofs for all the

propositions in the main paper. In Section D, we show the

scenes we used in this paper.

B. More Experimental Results

B.1. More Visual Comparison Results

Figure 6 shows more visual comparisons between our

approach and baseline approaches. Again, our approach

produces alignments that are close to the underlying

ground-truth. The overall quality of our alignments is su-

perior to that of the baseline approaches.

B.2. Cumulative Density Function

Figure 7 plots the cumulative density functions of errors

in rotations and translations with respect to a varying thresh-

old.

B.3. Illustration of Dataset

To understand the difficulty of the datasets used in our

experiments, we pick a typical scene from each of the Red-

wood and ScanNet datasets and render 15 out of 30 ground

truth point clouds from the same camera view point. From

Figure 9 and Figure 8, we can see that ScanNet is generally

harder than Redwood, as there is less information that can

be extracted by looking at pairs of scans.

C. Proofs of Propositions

We organize this section as follows. In Section C.1,

we provide key lemmas regarding the eigen-decomposition

of a connection Laplacian, including stability of eigenval-

ues/eigenvectors and derivatives of eigenvectors with re-

spect to elements of the connection Laplacian. In Sec-

tion C.2, we provide key lemmas regarding the projection

operator that maps the space of square matrices to the space

of rotations. Section C.3 to Section C.6 describe the proofs

of all the propositions stated in the main paper. Section C.7

provides an exact recovery condition of a rotation synchro-

nization scheme via reweighted least squares. Finally, Sec-

tion C.8 provides proofs for new key lemmas introduced in

this section.

C.1. EigenStability of Connection Laplacian

We begin with introducing the problem setting and nota-

tions in Section C.1.1. We then present the key lemmas in

Section C.1.2.

C.1.1 Problem Setting and Notations

Consider a weighted graph G = (V, E) with n vertices, i.e.,

|V| = n. We assume that G is connected. With wij > 0 we

denote an edge weight associated with edge (i, j) ∈ E . Let

L be the weighted adjacency matrix (Note that we drop w

from the expression of L to make the notations uncluttered).

It is clear that the leading eigenvector of L is 1√
n
1 ∈ R

n,

and its corresponding eigenvalue is zero. In the following,

we shall denote the eigen-decomposition of L as

L = UΛU
T
,

where

U = (u2, · · · ,un) and Λ = diag(λ2, · · · , λn)

collect the remaining eigenvectors and their corresponding

eigenvalues of L(w), respectively. Our analysis will also

use a notation that is closely related to the pseudo-inverse

of L:

L
+

t := U(Λ + tIn−1)
−1U

T
, ∀|t| < λ2. (12)

Our goal is to understand the behavior of the leading

eigenvectors of L ⊗ Ik + E2 for a symmetric perturbation

matrix E ∈ R
nk×nk, which is a n × n block matrix whose

blocks are given by

Eij =

{

0 i = j
−wijNij (i, j) ∈ E

where Nij is the perturbation imposed on Rij .

We are interested in U ∈ R
nk×k, which collects the lead-

ing k eigenvectors of L ⊗ Ik + E in its columns. With

λ1 ≤ λ2 · · · ≤ λk we denote the corresponding eigenval-

ues. Note that due to the property of connection Lapla-

cian, λi ≥ 0, 1 ≤ i ≤ k. Our goal is to 1) bound the

eigenvalues λi, 1 ≤ i ≤ k, and 2) to provide block-wise

bounds between U and 1√
n
1⊗Q, for some rotation matrix

Q ∈ SO(k).
Besides the notations introduced above that are related to

Laplacian matrices, we shall also use a few matrix norms.

With ‖·‖ and ‖·‖F we denote the spectral norm and Frobe-

nius norm, respectively. Given a vector v ∈ R
n, we de-

note ‖v‖∞ = max
1≤i≤n

|vi| as the element-wise infinity norm.

We will also introduce a norm ‖ · ‖1,∞ for square matrices,

which is defined as

‖A‖1,∞ = max
1≤i≤n

n
∑

j=1

|aij |, ∀A = (aij)1≤i,j≤n ∈ R
n×n.

We will also use a similar norm defined for n × n block

matrices E ∈ R
nk×nk (i.e., each block is a k × k matrix):

‖E‖1,∞ = max
1≤i≤n

n
∑

j=1

‖Eij‖, ∀E = (Eij)1≤i,j≤n ∈ R
nk×nk.

2Note that when applying the stability results to the problem studied in

this paper, we always use k = 3. However, when assume a general k when

describing the stability results.



Ground Truth RotAvg Geometric Registration Our Approach

Figure 6: We show the results of ground truth result (column I), Rotation Averaging [12]+Translation Sync. [26] (column II),

Geometric Registration [15] (column III), and Our Approach (column IV). These scenes are from Redwood Chair dataset.

C.1.2 Key Lemmas

This section presents a few key lemmas that will be used to

establish main stability results regarding matrix eigenvec-

tors and matrix eigenvalues. We begin with the classical

result of the Weyl’s inequality:

Lemma C.1. (Eigenvalue stability) For 1 ≤ i ≤ k, we

have

λi ≤ ‖E‖. (13)

We proceed to describe tools for controlling the eigen-

vector stability. To this end, we shall rewrite U as follows:

U =
1√
n
1⊗X + Y.
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Figure 7: Corresponding cumulative density function (CDF) curves. For the top block, we plot CDF from different input

sources. Here ”all” corresponds to errors between all pairs and ”good” corresponds to errors between selected pairs. The pairs

were selected by 1) computing ICP refinement, 2) computing overlapping region by finding points in source point clouds that

are close to target point clouds (i.e. by setting a threshold), 3) for these points, we compute their median distance to the target

point clouds. For the middle block, we report the comparison of baselines and our approach. Results from different input

sources are reported separately. For the bottom block, we report the comparison between variants of our approach using Fast

Global Registration as the input pairwise alignments.



Figure 8: A typical example of the a Redwood Chair scene: the 1st, 3rd, 5th, 7th, . . ., 29th of the selected scans are rendered

from the same camera view point. Each scan is about 40 frames away from the next one.

Our goal is to bound the deviation between X and a rotation

matrix and blocks of Y .

We begin with controlling X , which we adopt a result

described in [8]:

Lemma C.2. (Controlling X[8]) If

‖E‖ <
λ2

2
,

then there exists Q ∈ SO(k)3 such that

‖X −Q‖ ≤ 1−
√

1−
( ‖E‖
λ2 − ‖E‖

)2

.

In particular,

‖X −Q‖ ≤
( ‖E‖
λ2 − ‖E‖

)2

3If not, we can always negate the last column of U.



Figure 9: A typical example of the a ScanNet scene: the 1st, 3rd, 5th, 7th, . . ., 29th of the selected scans are rendered from

the same camera view point. Each scan is about 40 frames away from the next one.

It remains to control the blocks of Y . We state a formu-

lation that expresses the column of Y using a series:

Lemma C.3. Suppose ‖E‖ < λ2

2 , then ∀1 ≤ j ≤ k,

Y e
(k)
j = − 1√

n

∞
∑

l=1

(

(L
+

−λj
⊗ Ik)E

)l

(1⊗X)e
(k)
j . (14)

We conclude this section by providing an explicit expres-

sion for computing the derivative of the leading eigenvec-

tors of a connection Laplacian with its elements:

Lemma C.4. Let L be an N ×N non-negative definite ma-

trix and its eigen-decomposition is

L =
N
∑

i=1

λiuiu
T
i (15)

where 0 ≤ λ1 ≤ λ2 ≤ . . . λN .

Suppose λk < λk+1. Collect the eigenvectors corre-

sponding to the smallest k eigenvalues of L as the columns

of matrix Uk. Namely, Uk = [u1, . . . ,uk] where σ1, . . . , σk

are the smallest k eigenvelues of L.



Notice that L can have different decompositions in (15)

when there are repetitive eigenvalues. But in our case where

λk < λk+1, we claim that UkU
T
k is unique under differ-

ent possible decomposition of L so that d(UkU
T
k ) is well-

defined and has an explicit expression:

d(UkU
T
k ) =

k
∑

i=1

N
∑

j=k+1

uT
j dLui

σi − σj

(uiu
T
j + uju

T
i ) (16)

Moreover, the differentials of eigenvalues are

dσi = uT
i dLui. (17)

C.2. Key Lemma Regarding the Projection Opera
tor

This section studies the projection operator which maps

the space of square matrices to the space of rotation matri-

ces. We begin with formally defining the projection opera-

tor as follows:

Definition 1. Suppose det(M) > 0. Let M =
∑n

i=1 σiuiv
T
i be the singular value decomposition of

square matrix M where U = [u1, . . . ,u1] and V =
[v1, . . . ,vn] are both orthogonal matrices, and all coeffi-

cients σi are non-negative. Then we define the rotation ap-

proximation of M as

R(M) :=

n
∑

i=1

uiv
T
i = UV T .

It is clear that R(M) is a rotation matrix, since 1) both U
and V T are rotations, and 2) det(UV T ) > 0.

Lemma C.5. Let A ∈ R
nk×k be a block matrix of form

A =







A1

...

An







where Ai ∈ R
k×k. Use aij to denote the element on posi-

tion i, j in A. Then we have

n
∑

i=1

‖Ai‖2 ≤ k‖A‖2

We then present the following key lemma regarding the

stability of the projection operator:

Lemma C.6. Let M be a square matrix and ǫ = ‖M − I‖.

Suppose ǫ < 1
3 , then

‖R(M)− I‖ ≤ ǫ+ ǫ2.

Lemma C.7. Regarding R(M) as a function about M , then

the differential of R(M) would be

dR(M) =
∑

i 6=j

uT
i dMvj − uT

j dMvi

σi + σj

uiv
T
j

where all notations follow Definition (1).

C.3. Robust Recovery of Rotations

We state the following result regarding robust recovery

of rotations using the connection:

Proposition 3. Suppose the underlying rotations are given

by R⋆
i , 1 ≤ i ≤ n. Modify the definition of E such that

Eij =

{

−wijR
⋆
j (R

⋆
j
TRijR

⋆
i − Ik)R

⋆
i
T (i, j) ∈ E

0 otherwise

Define

ǫ1 :=
2‖E‖1,∞

λ2

, ǫ2 := ‖L+‖1,∞‖E‖1,∞. (18)

Suppose ǫ1 < 1, ǫ2 < 1, and

δ :=
( ǫ1

2− ǫ1

)2

+
√
k·
(

1+
( ǫ1

2− ǫ1

)2
)

· ǫ2(1 + ǫ2)

1− ǫ2(1 + ǫ2)
<

1

3
.

Then the optimal solution Ri, 1 ≤ i ≤ n to the rotation

synchronization step satisfies that there exists Q ∈ SO(k),

max
1≤i≤n

‖Ri −R⋆
iQ‖ ≤ δ + δ2. (19)

Proof of Prop. 3: Without losing generality, we assume

R⋆
i = Ik, 1 ≤ i ≤ k when proving Prop. 3. In

fact, we can always apply an unitary transform to obtain

diag(R⋆
1, · · · , R⋆

n)
TLdiag(R⋆

1, · · · , R⋆
n), which does not

impact the structure of the eigen-decomposition, and which

satisfies the assumption.

Before proving Prop.3, we shall utilize two Lemmas,

whose proofs are deferred to Section C.8.

Lemma C.8. Under the assumptions described above, we

have

‖L+

−λj
‖1,∞ ≤ ‖L+‖1,∞(1 + ‖L+‖1,∞‖E‖1,∞). (20)

Lemma C.9. Given a k × k matrix A, we have

‖A‖ ≤
√
k max

1≤j≤k
‖Ae(k)j ‖. (21)



Now we proceed to complete the proof of Prop.3. First

of all, applying Lemma C.2, we obtain that there exists Q ∈
SO(k) such that

‖X −Q‖ ≤
( ǫ1

2− ǫ1

)2
. (22)

Applying Lemma C.3, we have ∀1 ≤ j ≤ k,

√
n‖(e(n)i ⊗ Ik)Y e

(k)
j ‖ (23)

≤
∞
∑

l=1

‖(L+

−λj
)E‖l1,∞‖X‖

≤
∞
∑

l=1

(

‖L+

−λj
‖1,∞‖E‖1,∞

)l‖X‖

=
‖L+

−λj
‖1,∞‖E‖1,∞

1− ‖L+

−λj
‖1,∞‖E‖1,∞

‖X‖

(20)
≤

‖L+‖1,∞‖E‖1,∞(1 + ‖L+‖1,∞‖E‖1,∞)

1− ‖L+‖1,∞‖E‖1,∞(1 + ‖L+‖1,∞‖E‖1,∞)
· ‖X‖

≤ ǫ2(1 + ǫ2)

1− ǫ2(1 + ǫ2)
·
(

1 +
( ǫ1

2− ǫ1

)2
)

. (24)

We can now conclude the proof by combining (22), (24),

Lemma C.9, and Lemma C.6.

C.4. Robust Recovery of Translations

In the same spirit as the preceding section, we assume

the underlying ground-truth satisfies

R⋆
i = Ik, t

⋆
i = 0, 1 ≤ i ≤ n. (25)

In other words, a correct measurement along edge (i, j) ∈ E
should satisfy Rij = Ik, tij = 0. As we will see later, this

assumption makes the error bound easier to parse. It is easy

to see that the more general setting can always be converted

into this simple setup through factoring out the rigid trans-

formations among the coordinate systems associated with

the input objects.

We present a formal statement of Prop. 4.2 of the main

paper as follows:

Proposition 4. Consider the assumption of (25). Define

ǫ3 := max
1≤i≤n

∑

j∈N (i)

wij‖tij‖ (26)

Intuitively, ǫ3 measures the cumulative transformation error

associated with each object. Under the same assumption as

Prop. 3 for the connection Laplacian L = L ⊗ Ik + E, we

can bound the error of the translation synchronization step

as

max
1≤i≤n

‖ti‖ ≤ ‖L+‖1,∞ǫ3

1− 4ǫ2
. (27)

Proof of Lemma 4: First of all, note that (1⊗ Ik)
T b = 0.

Thus we can factor out the component in E that corresponds

the the subspace spanned by 1⊗ Ik. Specifically, define

E′ =
(

(I − 1

n
11

T )⊗ Ik
)

E
(

(I − 1

n
11

T )⊗ Ik
)

.

It is easy to check that

‖E′‖1,∞ ≤ 4‖E‖1,∞.

Moreover,

t = (L⊗ Ik + E′)+b.

This means

max
1≤i≤n

‖ti‖ ≤ ‖(L⊗ Ik + E′)+‖1,∞ǫ3.

Note that

(L⊗ Ik + E′)+ =

∞
∑

l=0

(

(L
+ ⊗ Ik)E

′)l(L
+ ⊗ Ik).

It follows that

‖(L⊗ Ik + E′)+‖1,∞

≤
∞
∑

l=0

‖
(

(L
+ ⊗ Ik)E

′)‖l1,∞‖(L+ ⊗ Ik)‖1,∞

=

∞
∑

l=0

(‖L+‖1,∞‖E′‖1,∞)l‖L+‖1,∞

≤ ‖L+‖1,∞
1− 4‖L+‖1,∞‖E‖1,∞

.

C.5. Proof of Proposition 1 in the Main Paper

Applying Lemma C.7, we have

dRi =
∑

1≤s,t≤k

v
(i)
s

T

dUiw
(i)
t − v

(i)
t

T

dUiw
(i)
s

σ
(i)
s + σ

(i)
t

v(i)
s w

(i)
t

T

.

(28)

We further divide the computation of dUi into two parts.



Consider the j-th column of dUi:

dUie
(k)
j = (e

(n)
i

T

⊗ Ik)dUe
(k)
j

= (e
(n)
i

T

⊗ Ik)duj

= (e
(n)
i

T

⊗ Ik)
∑

l 6=j

ul

uT
j dLul

λj − λl

= (e
(n)
i

T

⊗ Ik)
(

k
∑

l=1
l 6=j

uT
j dLul

λj − λl

ul+

kn
∑

l=k+1

uT
j dLul

λj − λl

ul

)

= dU
(inner)
i e

(k)
j + dU

(outer)
i e

(k)
j (29)

where

dU
(inner)
i e

(k)
j = (e

(n)
i

T

⊗ Ik)
k
∑

l=1
l 6=j

ulu
T
l

λj − λl

dLuj (30)

=

k
∑

l=1
l 6=j

(Uie
(k)
l )

ulu
T
l

λj − λl

dLuj (31)

dU
(outer)
i e

(k)
j = (e

(n)
i

T

⊗ Ik)
kn
∑

l=k+1

ulu
T
l

λj − λl

dLuj (32)

In (30), we used the fact that (e
(n)
i

T

⊗ Ik)ul is just Uie
(k)
l

by definition of Ui.

Since dRi is linear with respect to dUi, we can divide

dRi similarly:

dRi = dR
(inner)
i + dR

(outer)
i

dR
(inner)
i :=

∑

1≤s,t≤k

v
(i)
s

T

dU
(inner)
i w

(i)
t − v

(i)
t

T

dU
(inner)
i w

(i)
s

σ
(i)
s + σ

(i)
t

v(i)
s w

(i)
t

T

(33)

dR
(outer)
i :=

∑

1≤s,t≤k

v
(i)
s

T

dU
(outer)
i w

(i)
t − v

(i)
t

T

dU
(outer)
i w

(i)
s

σ
(i)
s + σ

(i)
t

v(i)
s w

(i)
t

T

(34)

Then the derivative we would like to compute can be

written as

d(RiR
T
j ) = dRiR

T
j +RidRj

T

= dR
(inner)
i RT

j +RidR
(inner)
j

T

+ dR
(outer)
i RT

j +RidR
(outer)
j

T

. (35)

From (34) and (32) it can be easily checked that the for-

mula in Proposition 1 of the main aper that we want to

prove is just (35) except the extra terms dR
(inner)
i RT

j +

RidR
(inner)
j

T

. Hence in the remaining proof it suffices to

show that

dR
(inner)
i RT

j +RidR
(inner)
j

T

= 0.

To this end, we define a k-by-k auxiliary matrix C as

Clj =
uT
j dLul

λj − λl

for all l 6= j and Cjj = 0. Since L is symmetric, C would

be skew-symmetric that means C + CT = 0. Fist of all,

notice that

dU
(inner)
i =

k
∑

l=1
l 6=k

(Uie
(k)
l )

uT
j dLul

λj − λl

= UiC.

Also it is clear that

v(i)
s

T
Ui = σsw

T
s

by using simple properties of SVD. It follows that

dR
(inner)
i =

∑

1≤s,t≤k

σsw
(i)
s

T

Cw
(i)
t − σtw

(i)
t

T

Cw
(i)
s

σ
(i)
s + σ

(i)
t

v(i)
s w

(i)
t

T

(36)

=
∑

1≤s,t≤k

w(i)
s

T
Cw

(i)
t v(i)

s w
(i)
t

T

(37)

=
∑

1≤s,t≤k

v(i)
s w(i)

s

T
Cw

(i)
t w

(i)
t

T

(38)

= V (i)W (i)TC (39)

= RiC. (40)

In the derivations above, we used the fact that C is a skew-

symmetric matrix for deriving the first equality (36). In

addition, we used the fact that v
(i)
s

T

Cv
(i)
t is a scalar for

deriving the second equality (37). When deriving (38),

we used the expansion of U (i)V (i)T and the fact that

{v(i)
1 , . . . ,v

(i)
k } form an orthonormal basis:

U (i)V (i)T =
k
∑

s=1

u(i)
s v(i)

s

T
, I =

k
∑

t=1

v(i)
s v(i)

s

T
.

(39) uses the definition of Ri. Finally, plugging (40) into

(35) gives

dR
(inner)
i RT

j +RidR
(inner)
j

T

= RiCRT
j +RiC

TRT
j = 0,

which completes our proof.



C.6. Proof of Proposition 2 in the Main Paper

The proof is straightforward, since

0 = d(L · L−1) = dL · L−1 + L · d(L−1),

meaning

dL = −L−1dLL−1.

In the degenerate case, we replace L−1 by L+. This is

proper since the only null space of L is 1⊗ Ik, which does

not affect the solution t.

C.7. Exact Recovery Condition of Rotation Syn
chronization

Similar to [26], we can derive a truncated rotation syn-

chronization scheme (the generalization to transformation

synchronization is straight-forward). Specifically, consider

an observation graph G = (V, E). Let Ebad ⊂ E be the

edge set associated with incorrect rotation measurements.

Starting from G, at each iteration, we use the solution

R
(k)
i , 1 ≤ i ≤ n at the kth iteration to prune input rota-

tions whenever ‖Rij −R
(k)
j R

(k)
i

T

2γk, where γ < 1 is a constant. Using Prop. 3, we can

easily derive the following exact recovery condition:

Proposition 5. The truncated rotation synchronization

scheme recovers the underlying ground-truth if

‖L+
G ‖1,∞dmax(Ebad) ≤

1

16
, γ > 0.95, (41)

where LG is the graph Laplacian of G, and dmax(Ebad) is

the maximum number of bad edges per vertex. Note that the

constants in (41) are not optimized.

Proof: Denote ǫ4 := ‖L+
G ‖1,∞dmax(Ebad). Consider an ar-

bitrary set Er ⊆ Ebad. Introduce the graph that collects the

corresponding remaining observations Gcur = (V, Ecur),
where Ecur = E \ (Ebad \ Er). Suppose we apply rota-

tion synchronization step to Gcur and the associated obser-

vations, it is easy to show that (c.f.[26])

ǫ2 ≤ 2
ǫ4

1− ǫ4
· max
(i,j)∈Ecur

‖Nij‖, ǫ1 ≤ 2ǫ2.

Using Prop. 3 and after simple calculations, we can derive

that the truncated scheme described above will never re-

move good measurements, which end the proof.

Remark 1. This exact recovery condition suggests that if

we simply let the weighting function to be small when the

residual is big, then if the ratio of the incorrect measure-

ments is small. It is guaranteed to remove all the incor-

rect measurement. Yet to maximize the effectiveness of

the weighting scheme, it is suggested to learn the optimal

weighting scheme from data. The approach presented in

the main paper is one attempt in this direction.

C.8. Proofs of Key Lemmas

C.8.1 Proof of Lemma C.3

We first introduce the following notations, which essentially

express E in the coordinate system spanned by 1√
n
(1⊗ Ik)

and U ⊗ Ik:

E11 : =
1

n
(1⊗ Ik)

TE(1⊗ Ik),

E12 : =
1√
n
(1⊗ Ik)

TE(U ⊗ Ik),

E21 : =
1√
n
(U ⊗ Ik)

TE(1⊗ Ik),

E22 : = (U ⊗ Ik)
TE(U ⊗ Ik).

Let Y := (U⊗Ik)Y . Substituting U = 1√
n
(1⊗Ik)+(U⊗

Ik)Y into

(L⊗ Ik + E)U = UΛ,

we obtain

(L⊗ Ik + E)(
1√
n
(1⊗ Ik) + (U ⊗ Ik)Y )

=(
1√
n
(1⊗ Ik) + (U ⊗ Ik)Y )Λ.

Multiply both sides by (U ⊗ Ik)
T , it follows that

E21X + (Λ⊗ Ik)Y + E22Y = Y Λ.

Since ‖E‖ < λ2

2 , we have

Y e
(k)
j := (U ⊗ Ik)Y e

(k)
j

= −(U ⊗ Ik)
(

(Λ− λj)⊗ Ik − E22

)−1
E21Xe

(k)
j

= −
∞
∑

l=0

(U ⊗ Ik)
(

((Λ− λj)
−1 ⊗ Ik)E22

)l

·
(

(Λ− λj)
−1 ⊗ Ik

)

E21Xe
(k)
j

= −
∞
∑

l=1

(

(U(Λ− λj)
−1U

T
)⊗ IkE

)l 1√
n
1⊗Xe

(k)
j

= − 1√
n

∞
∑

l=1

(

L+
−λj

E
)l
(1⊗Xe

(k)
j ).

C.8.2 Proof of Lemma C.4

Let

L =
N
∑

i=1

σiuiu
T
i =

N
∑

i=1

σiu
′
iu

′T
i



be two different decompositions of L. It can be written in

matrix form

L = UΛUT = U ′ΛU ′T

where U = [u1, . . . ,uN ], Λ = diag(σ1, . . . , σN ), U ′ =
[u′

1, . . . ,uN ]. Then we have

(U ′TU)Λ = Λ(U ′TU)

Let A = U ′TU and the element of position (i, j) on A
be aij , then we have

aijσj = σiaij ,

which means aij = 0 for all σi 6= σj .

Since we have assumed σ1 ≤ · · · ≤ σk < σk+1 ≤ · · · ≤
σN , the matrix A would have form

[

Ak,k Ok,N−k

ON−k,k AN−k,N−k

]

.

But we have known that A is an orthogonal matrix, thus

Ak,k is also an orthogonal matrix. In this way Ak,k =
U ′T
k Uk can be rewritten as

Uk = U ′
kAk,k

and furthermore we have

UkU
T
k = U ′

k(Ak,kA
T
k,k)U

′T
k = U ′

kU
′T
k .

Since eigen-decomposition is a special case of SVD

when dealing with symmetric matrix, (53) gives

dui =
∑

j 6=i

σiu
T
j dLui + σju

T
i dLuj

σ2
i − σ2

j

uj

=
∑

j 6=i

uT
i dMuj

σi − σj

uj

in which we used the fact that dL is also symmetric in the

last step.

Finally the differential of UkU
T
k can be written as

d(UkU
T
k )

=d

(

k
∑

i=1

uiu
T
i

)

=

k
∑

i=1

(duiu
T
i + uidu

T
i )

=

k
∑

i=1

N
∑

j=1
j 6=i

uT
i dMuj

σi − σj

(uju
T
i + uiu

T
j )

=

k
∑

i=1

N
∑

j=k+1

uT
i dMuj

σi − σj

(uju
T
i + uiu

T
j )+

k
∑

i=1

k
∑

j=i+1

(

uT
i dMuj

σi − σj

+
uT
i dMuj

σj − σi

)

(uju
T
i + uiu

T
j )

=

k
∑

i=1

N
∑

j=k+1

uT
i dMuj

σi − σj

(uju
T
i + uiu

T
j )

As for formula (17), taking differential of equation

Lui = σiui, we obtain

dLui + Ldui = dσiui + σidui

Let us multiply both sides by uT
i and notice that uT

i ui =
1, Lui = σiui, and uT

i dui = 0, we conclude that the

equation above can be simplified to

dσi = uT
i dLui.

C.8.3 Proof of Lemma C.5

It is well-known that ‖X‖ ≤ ‖X‖F for any matrix X where

‖ · ‖F represents the Frobenius norm. Thus

k‖A‖2 =

k
∑

j=1

‖A‖2 ≥
k
∑

j=1

kn
∑

i=1

a2ij

=

kn
∑

i=1

k
∑

j=1

a2ij =

n
∑

i=1

‖Ai‖2F

≥
n
∑

i=1

‖Ai‖

completes our proof.

C.8.4 Proof of Lemma C.6

Suppose M =
∑n

i=1 σiuiv
T
i is the SVD decomposition of

M . By definition of R(·),

R(M) =

n
∑

i=1

uiv
T
i .



First we have a simple lower bound on ǫ:

ǫ = ‖M − I‖ ≥ |(M − I)vi| = |σi − 1|. (42)

It is enough to show that for any unit vector p ∈ R
n we

have

‖R(M)p− p‖ ≤ (1 + ǫ)‖Mp− p‖. (43)

In fact, if (43) is true, then

‖R(M)− I‖ = max
|p|=1

‖R(M)p− p‖

≤ max
|p=1

(1 + ǫ)‖Mp− p‖

≤ (1 + ǫ)ǫ (by definition of ǫ).

By noting {v1, . . . ,vn} are a set of basis on R
n, we can

decompose R(M) and M into

R(M)p− p =

n
∑

i=1

uiv
T
i p−

n
∑

i=1

vi(v
T
i p)

=

n
∑

i=1

(ui − vi)(v
T
i p)

Mp− p =

n
∑

i=1

σiuivip−
n
∑

i=1

vi(v
T
i p)

=

n
∑

i=1

(σiui − vi)(v
T
i p)

To prove (43), it suffices to show that

|ui − vi| ≤ (1 + ǫ)|σiui − vi|.

Let δ = uT
i vi. The case that ui = vi is trivial. Also, if

σi = 0, then ǫ ≥ 1 and the resulting inequality

|ui − vi| ≤ 2|vi|

is trivial. Thus we can always assume |σui − vi| 6= 0 and

σi > 0. Then by the laws of cosines we have

|ui − vi|
|σiui − vi|

=

√

2− 2δ

1 + σ2
i − 2σiδ

=

√

σ−1
i +

2− (σ−1
i + σi)

1 + σ2
i − 2σiδ

(44)

In (44) it is clear that 2 − (σ−1
i + σi) ≤ 0 and 1 + σ2

i ≥
2σiδ. Hence by monotonicity (44) reaches its maximum

when δ = −1 and then

|ui − vi|
|σiui − vi|

≤ 2

1 + σi

= 1+
1− σi

1 + σi

≤ 1+ |σi−1| ≤ 1+ǫ

C.8.5 Proof of Lemma C.7

For the sake of brevity we simply write R instead of R(M)
in the following proof. It is easy to see that

Mvi = σiui uT
i M = σiv

T
i

for i = 1, . . . , n. Taking the differential on both sides we

obtain

dMvi +Mdvi = dσiui + σidui (45)

duT
i M + uT

i dM = dσiv
T
i + σidv

T
i (46)

Left multiplying both sides of (45) by uj with j 6= i and

observing that uT
j ui = 0, we obtain

uT
j dMvi + uT

j Mdvi = σiu
T
j dui (47)

Similarly right multiplying both sides of (46) by vT
j with

j 6= i gives

duT
i Mvj + uT

i dMvj = σidv
T
i vj (48)

Since uT
j M = σjv

T
j , Mvj = σju

T
j , we have

uT
j dMvi + σjv

T
j dvi = σiu

T
j dui (49)

duT
i σjuj + uT

i dMvj = σidv
T
i vj (50)

for all i 6= j.

Observe that uT
j dui = duT

i uj , vT
j dvi = dvT

i vj .

Combining (49) and (50) and regarding them as a linear

equation group about uT
j dui and vT

j dvi they can be solved

out as

uT
j dui =

σiu
T
j dMvi + σju

T
i dMvj

σ2
i − σ2

j

(51)

vT
j dvi =

σiu
T
i dMvj + σju

T
j dMvi

σ2
i − σ2

j

(52)

Since uT
i ui = ‖ui‖ = 1, we have uT

i dui = 0. As

{u1, . . . ,un} form a set of orthogonal basis of Rn, we can

write ui as

dui =
∑

j 6=i

σiu
T
j dMvi + σju

T
i dMvj

σ2
i − σ2

j

uj (53)

Similarly for dvi we have

dvi =
∑

j 6=i

σiu
T
i dMvj + σju

T
j dMvi

σ2
i − σ2

j

vj (54)



Finally we can write dR as

dR =
∑

uidv
T
i +

∑

duiv
T
i

=
∑

i 6=j

σiu
T
i dMvj + σju

T
j dMvi

σ2
i − σ2

j

uiv
T
j

+
∑

i 6=j

σiu
T
j dMvi + σju

T
i dMvj

σ2
i − σ2

j

ujv
T
i

=
∑

i 6=j

(σi − σj)u
T
i dMvj − (σi − σj)u

T
j dMvi

σ2
i − σ2

j

uiv
T
j

=
∑

i 6=j

uT
i dMvj − uT

j dMvi

σi + σj

uiv
T
j

C.8.6 Proof of Lemma C.8

Since ‖E‖1,∞ ≤ λ2

2 , we have

L
+

−λj
= U(Λ− λj)

−1U
T

= U

∞
∑

l=0

L
−(l+1)

λl
jU

T

=

∞
∑

l=0

(L
+
)l+1λl

j , 1 ≤ j ≤ k.

As ‖E‖1,∞‖L+‖1,∞ < 1, it follows that

‖L+

−λj
‖1,∞ ≤

∞
∑

l=0

‖L+‖l+1
1,∞λl

j

≤
∞
∑

l=0

‖L+‖l+1
1,∞‖E‖l1,∞

= ‖L+‖1,∞
(

1 + ‖L+‖1,∞‖E‖1,∞
)

.

C.8.7 Proof of Lemma C.9

In fact, ∀x ∈ R
k, where ‖x‖ = 1, we have

‖Ax‖ ≤
k
∑

j=1

‖Ae
(k)
j ‖|xj |

≤ max
1≤j≤k

‖Ae(k)j ‖
k
∑

j=1

|xj |

≤ max
1≤j≤k

‖Ae(k)j ‖
√
k(

k
∑

j=1

x2
j )

1

2 .

D. Scenes used in this paper

For completeness, we show the scenes we used in this

paper. Including 100 scenes from ScanNet [17] dataset and

60 scenes from Redwood Chair dataset. Fig. 10-Fig. 10 and

Fig. 11-Fig. 11 show the scenes we used in the paper from

ScanNet and Redwood chair dataset, respectively.



scene047300 scene051300 scene045700 scene037400 scene027601

scene043500 scene035802 scene051600 scene026001 scene069601

scene060800 scene028801 scene000001 scene053600 scene025601

scene027600 scene001500 scene012900 scene041800 scene000002

scene052400 scene004301 scene067700 scene064600 scene033400

Figure 10: ScanNet Train Dataset (1st to 25th)



scene068501 scene005400 scene026401 scene008900 scene018400

scene036203 scene066700 scene000602 scene020901 scene043100

scene021001 scene025400 scene012400 scene058102 scene010200

scene015201 scene046501 scene004800 scene000600 scene010201

scene045201 scene044702 scene001601 scene024701 scene034000

Figure 10: ScanNet Train Dataset (26th to 50th)



scene069201 scene031701 scene004700 scene019702 scene013401

scene062500 scene033501 scene035400 scene062900 scene043402

scene009200 scene060901 scene020600 scene000601 scene066900

scene027401 scene067901 scene017702 scene062200

Figure 10: ScanNet Train Dataset (51st to 69th)



scene066100 scene026201 scene057801 scene019701 scene047401

scene067601 scene064202 scene033502 scene022901 scene045701

scene058802 scene056900 scene070101 scene047701 scene003002

scene033402 scene026502 scene002501 scene004300 scene049301

scene022400 scene069400 scene028602 scene005701 scene030900

Figure 10: ScanNet Test Dataset (1st to 25th)



scene040602 scene035300 scene022300 scene014602 scene020800

scene057502 scene023101

Figure 10: ScanNet Test Dataset (26th to 32nd)
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01030 06207 00288 00578 01191

00279 05657 00033 01038 06130

Figure 11: Redwood Chair Train Dataset (1st to 25th)



06160 01053 05703 05702 01668

01194 00037 05324

Figure 11: Redwood Chair Train Dataset (26th to 33th)
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06031 00503 05987 00286 06266

01672 05472 05988 05333 01214

01034 01682 05624 01207 06286
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Figure 11: Redwood Chair Test Dataset


