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1. Dataset Visualizations

34%

11%
6%6%

6%

5%

5%

4%
4%
3%
2%
2%

GQA	TYPE	COMPOSITION	(DETAILED)queryRel
queryAttr
existRel
chooseAttr
verifyAttr
logicOr
verifyRel
queryObject
chooseRel
exist
logicAnd
verifyAttrs
queryState
chooseObject
twoSame
twoDiff
verifyGlobal
chooseGlobal
common
chooseObjRel
compare
allDiff
allSame

Figure 1: Top left: Distribution of GQA questions by first four words. The arc length is proportional to the number of questions containing
that prefix. Top right: question type distribution; please refer to table 1 for details about each type. Middle row: Number of occurrences
of the most frequent objects, categories, attributes and relations (excluding left/right (500k occurrences, inferred automatically rather than
being hand-annotated as all other relations). Third row: Word clouds for frequent objects, attributes and relations.
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Figure 2: Top left: Question length distribution for VQA datasets: we can see that GQA has a diverse range of lengths compared to all
other datasets except synthetic CLEVR. Bottom left: GQA Question structural and semantic type distributions. Right: The object class
hierarchy we have created as part of the dataset construction process.

Type Open/Binary Semantic Structural Form Example
queryGlobal open query global select: scene/query: type How is the weather in the image?
verifyGlobal binary verify global select: scene/verify type: attr Is it cloudy today?
chooseGlobal open query global select: scene/choose type: a|b Is it sunny or cloudy?
queryAttr open query attribute select: obj/. . . /query: type What color is the apple?
verifyAttr binary verify attribute select: obj/. . . /verify type: attr Is the apple red?
verifyAttrs binary logical attribute select: obj/. . . /verify t1: a1/verify t2: a2/and Is the apple red and shiny?
chooseAttr open choose attribute select: obj/. . . /choose type: a|b Is the apple green or red?
exist binary verify object select: obj/. . . /exist Is there an apple in the picture?
existRel binary verify relation select: subj/. . . /relate (rel): obj/exist Is there an apple on the black table?
logicOr binary logical object select: obj1/. . . /exist/select: obj2/. . . /exist/or Do you see either an apple or a banana there?
logicAnd binary logical obj/attr select: obj1/. . . /exist/select: obj2/. . . /exist/and Do you see both green apples and bananas there?
queryObject open query category select: category/. . . /query: name What kind of fruit is on the table?
chooseObject open choose category select: category/. . . /choose: a|b What kind of fruit is it, an apple or a banana?
queryRel open query relation select: subj/. . . /relate (rel): obj/query: name What is the small girl wearing?
verifyRel binary verify relation select: subj/. . . /verifyRel (rel): obj Is she wearing a blue dress?
chooseRel open choose relation select: subj/. . . /chooseRel (r1|r2): obj Is the cat to the left or to the right of the flower?
chooseObjRel open choose relation select: subj/. . . /relate (rel): obj/choose: a|b What is the boy eating, an apple or a slice of pizza?
compare binary compare object select: obj1/. . . /select: obj2/. . . /compare type Who is taller, the boy or the girl?
common open compare object select: obj1/. . . /select: obj2/. . . /common What is common to the shirt and the flower?
twoSame verify compare object select: obj1/. . . /select: obj2/. . . /same Does the shirt and the flower have the same color?
twoDiff verify compare object select: obj1/. . . /select: obj2/. . . /different Are the table and the chair made of different materials?
allSame verify compare object select: allObjs/same Are all the people there the same gender?
allDiff verify compare object select: allObjs/different Are the animals in the image of different types?

Table 1: Functions Catalog for all the GQA question types. For each question we mention its structural and semantic types (refer to table
1 for further details), a functional program template and a typical example of a generated question.



GQA
1. What is the woman to the right of the boat holding? umbrella
2. Are there men to the left of the person that is holding the
umbrella? no
3. What color is the umbrella the woman is holding? purple

VQA
1. Why is the person using an umbrella?
2. Is the picture edited?
3. What’s the color of the umbrella?

GQA
1. Is that a giraffe or an elephant? giraffe
2. Who is feeding the giraffe behind the man? lady
3. Is there any fence near the animal behind the man? yes
4. On which side of the image is the man? right
5. Is the giraffe behind the man? yes

VQA
1. What animal is the lady feeding?
2. Is it raining?
3. Is the man wearing sunglasses?

GQA
1. Is the person’s hair brown and long? yes
2. What appliance is to the left of the man? refrigerator
3. Is the man to the left or to the right of a refrigerator? right
4. Who is in front of the appliance on the left? man
5. Is there a necktie in the picture that is not red? yes
6. What is the person in front of the refrigerator wearing? suit
7. What is hanging on the wall? picture
8. Does the vest have a different color than the tie? no
9. What is the color of the shirt? white
10. Is the color of the vest different than the shirt? yes

VQA
1. Does this man need a haircut?
2. What color is the guys tie?
3. What is different about the man’s suit that
shows this is for a special occasion?

GQA
1. Who wears the gloves? player
2. Are there any horses to the left of the man? no
3. Is the man to the right of the player that wears gloves? no
4. Is there a bag in the picture? no
5. Do the hat and the plate have different colors? yes

VQA
1. What is the man holding?
2. Where are the people playing?
3. Is the player safe?
4. What is the sport being played?

GQA
1. What is the person doing? playing
2. Is the entertainment center at the bottom or at the top?
bottom
3. Is the entertainment center wooden and small? yes
4. Are the pants blue? no
5. Do you think the controller is red? no

VQA
1. What colors are the walls?
2. What game is the man playing?
3. Why do they stand to play?

GQA
1. Are there any coats? yes
2. Do you see a red coat in the image? no
3. Is the person that is to the left of the man exiting a truck? no
4. Which place is this? road

VQA
1. Where is the bus driver?
2. Why is the man in front of the bus?
3. What numbers are repeated in the bus number?

GQA
1. What is in front of the green fence? gate
2. Of which color is the gate? silver
3. Where is this? street
4. What color is the fence behind the gate? green
5. Is the fence behind the gate both brown and metallic? no

VQA
1. What are the yellow lines called?
2. Why don’t the trees have leaves?
3. Where is the stop sign?

Figure 3: Examples of questions from GQA and VQA, for the same images. As the examples demonstrate, GQA questions tend to involve
more elements from the image compared to VQA questions, and are longer and more compositional as well. Conversely, VQA questions
tend to be a bit more ambiguous and subjective, at times with no clear and conclusive answer. Finally, we can see that GQA provides more
questions for each image and thus covers it more thoroughly than VQA.



2. Dataset Balancing

Figure 4: Impact of the dataset balancing on the conditional answer distribution: The left side shows the distribution before any balancing.
We show the top 10 answers for a selection of question groups, where the column height corresponds to the relative frequency of each
answer. The top row shows global question groups such as color questions, questions about animals, etc. while the bottom row shows
local ones e.g. apple-color, table-material etc. (section 3.3, main paper). As we can see, these initial distributions are heavily biased. The
right side shows the distributions after balancing, more uniform and with heavier tails, while intentionally retaining the original real-world
tendencies up to a tunable degree.

As discussed in section 3.4 (main paper), given the original
22M auto-generated questions, we have performed answer-
distribution balancing, similarities reduction and type-based
sampling, producing a 1.7M questions balanced dataset.
The balancing is performed in an iterative manner: as ex-
plained in section 3.3, for each question group (e.g., color
questions), we iterate over the answer distribution, from the
most to least frequent answers: (ai, ci) when ai is the an-
swer and ci is its count. In each iteration i, we downsam-
ple the head distribution (aj , j ≤ i) such that the ratio be-

tween the head and its complementary tail
∑

j≤i cj

1−
∑

j≤i cj
will

be bounded by b. While doing so, we also make sure to set
minimum and maximum bounds on the frequency ratio ci+1

ci
of each pair of consequent answers ai, ai+1. The results of
this process is shown in figure 4, demonstrating how the dis-
tribution is “pushed” away from the head and spreads over

the tail, while intentionally maintaining the original real-
world tendencies presented in the data, to retain its authen-
ticity.

3. Baselines Implementation Details
In section 4.2 (main paper), we perform experiments over
multiple baselines and state-of-the-art models. All CNN
models use spatial features pre-trained on ImageNet [3],
whereas the state-of-the-art approaches bottomUp [2] and
MAC [5] are based on object-based features produced by
the Faster R-CNN detector [11]. All models use GloVe
word embeddings of dimension 300 [10]. To allow a fair
comparison, all the models use the same LSTM, CNN and
classifier components, and so the only difference between
the models stem from their core architectural design.
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Figure 5: From left to right: (1) Accuracy as a function of textual question length – the number of words in the question. (2) Accuracy as a
function of semantic question length – the number of operations in its functional program. (3) Performance as a function of the subset size
used for training, ranging from 10K to 10M. (4) Accuracy for different lengths of MAC networks, suggesting that indeed GQA questions
are compositional.

We used a sigmoid-based classifier and trained all mod-
els using Adam [7] for 15 epochs, each taking about an hour
to complete. For MAC [5], we use the authors’ code avail-
able online, with 4 cells. For BottomUp [2], since the orig-
inal implementation is unfortunately not publicly available,
we re-implemented the model, carefully following details
presented in [2, 12]. To ensure the correctness of our imple-
mentation, we have tested the model on the standard VQA
dataset, achieving 67%, which matches the original scores
reported by Anderson et al. [2].

4. Further Diagnosis
Following section 4.2 (main paper), and in order to get

more insight into models’ behaviors and tendencies, we per-
form further analysis of the top-scoring model for the GQA
dataset, MAC [5]. The MAC network is a recurrent atten-
tion network that reasons in multiple concurrent steps over
both the question and the image, and is thus geared towards
compositional reasoning as well as rich scenes with several
regions of relevance.

We assess the model along multiple axes of variation,
including question length, both textually, i.e. number of
words, and semantically, i.e. number of reasoning opera-
tions required to answer it, where an operation can be e.g.
following a relation from one object to another, attribute
identification, or a logical operation such as or, and or not.
We provide additional results for different network lengths
(namely, cells number) and varying training-set sizes, all
can be found in figure 5.

Interestingly, question textual length correlates posi-
tively with the model accuracy. It may be the case that
longer questions reveal more cues or information that the
model can exploit, potentially sidestepping direct reasoning
about the image. However, question semantic length has
the opposite impact as expected: 1-step questions are par-
ticularly easy for models than the compositional ones which
involve more steps.
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Figure 6: Performance as a function of the input representation.
We encode the scenes through three different methods: spatial fea-
tures produced by a standard pretrained CNN, object-based fea-
tures generated by a faster R-CNN detector, and direct embedding
of the scene graph semantic representation, equivalent to having
perfect sight. We further experiment with both textual questions
as well as their counterpart functional programs as input. We can
see that the more semantically-imbued the representations get, the
higher the accuracy obtained.
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Figure 7: Distribution of GQA questions semantic length (number
of computation steps to arrive at the answer). We can see that most
questions require about 2-3 reasoning steps, where each step may
involve tracking a relation between objects, an attribute identifica-
tion or a logical operation.



Figure 8: Entailment relations between different question types. In section 3.3 (main paper) we discuss the entailment and equivalences
between questions. Since every question in the dataset has a matching logical representation of the sequence of reasoning steps, we can
formally compute all the entailment and equivalence relations between different questions. Indeed, a cogent and reasonable learner should
be consistent between its own answers, e.g. should not answer “red” to a question about the color of an object it has just identified as blue.
Some more subtle relations also occur, such as those involving relations, e.g. if X is above Y, than Y is below X, and X is not below Y, etc.
figure 8 shows all the logical relations between the various question types. Refer to table 1 for a complete catalog of the different types.
Experiments show that while people excel at consistency, achieving the impressive 98.4%, deep learning models perform much worse in
this task, with 69% - 82%. These results cast a doubt about the reliability of existing models and their true visual understanding skills.
We therefore believe that improving their skills towards enhanced consistency and cogency is an important direction, which we hope our
dataset will encourage.

We can further see that longer MAC networks with more
cells are more competent in performing the GQA task, sub-
stantiating its increased compositionality. Other experi-
ments show that increasing the training set size has signifi-
cant impact on the model’s performance, as found out also
by Kafle et al. [6]. Apparently, the training set size has not
reached saturation yet and so models may benefit from even
larger datasets.
Finally, we have measured the impact of different input
representations on the performance. We encode the visual
scene with three different methods, ranging from standard
pretrained CNN-based spatial features, to object-informed
features obtained through faster R-CNNs detectors [11], up
to even a “perfect sight” model that has access to the precise
semantic scene graph through direct node and edge embed-
dings. As figure 5 shows, the more high-level and semantic
the representation is, the better are the results.

On the question side, we explore both training on the stan-
dard textual questions as well as the semantic functional
programs. MAC achieves 53.8% accuracy and 81.59% con-
sistency on the textual questions and 59.7% and 85.85%
on the programs, demonstrating the usefulness and further
challenge embodied in the former. It is also more consis-
tent Indeed, the programs consist of only a small operations
vocabulary, whereas the questions use both synonyms and
hundreds of possible structures, incorporating probabilistic
rules to make them more natural and diverse. In particu-
lar, GQA questions have sundry subtle and challenging lin-
guistic phenomena such as long-range dependencies, absent
from the canonical programs. The textual questions thus
provide us with the opportunity to engage with real, inter-
esting and significant aspects of natural language, and con-
sequently foster the development of models with enhanced
language comprehension skills.



5. Comparison between GQA and VQA 2.0

We perform a comparison between GQA and VQA 2.0
[4] datasets, as summarized in table 2. We can see that GQA
questions are longer on average, and consequently contain
more verbs and prepositions than VQA (as well as more
nouns and adjectives), providing further evidence for its in-
creased compositionality. Semantically, GQA questions are
significantly more compositional than VQA’s, and involve
a variety of reasoning skills with much higher frequency
(spatial, logical, relational and comparative).

Some VQA question types are not covered by GQA,
such as intention (why) questions (Why is she holding an
umbrella?), subjective questions (Does he like blue?) or
ones involving OCR (What does the sign read?) or external
knowledge (In which university are they studying? Which
animal likes bananas?). In contrast, the GQA dataset fo-
cuses on factual questions and multi-hop reasoning in par-
ticular, rather than covering all types. Comparing to VQA,
GQA questions are by-construction more objective, unam-
biguous, and can be answered from the images only, poten-
tially making this benchmark more controlled and conve-
nient for making research progress on.

6. Scene Graph Normalization

Our starting point in creating the GQA dataset is the Vi-
sual Genome Scene Graph annotations [8] that cover 113k
images from COCO [9] and Flickr [13]. The scene graph
serves as a formalized representation of the image: each
node denotes an object, a visual entity within the image,
like a person, an apple, grass or clouds. It is linked to a
bounding box specifying its position and size, and is marked
up with about 1-3 attributes, properties of the object: e.g.,
its color, shape, material or activity. The objects are con-
nected by relation edges, representing actions (verbs), spa-
tial relations (prepositions), and comparatives.

The scene graphs are annotated with free-form natural
language. Our first goal is thus to convert the annotations
into a clear and unambiguous semantic ontology. We be-
gin by cleaning up the graph’s vocabulary, removing stop
words, fixing typos, consolidating synonyms and filtering
rare or amorphous concepts. We then classify the vocabu-
lary into predefined categories (e.g., animals and fruits for
objects; colors and materials for attributes), using word em-
bedding distances to get preliminary annotations, which are
then followed by manual curation. This results in a class hi-
erarchy over the scene graph’s vocabulary, which we further
augment with various semantic and linguistic features like
part of speech, voice, plurality and synonyms – information
that will be used to create grammatically correct questions
in further steps. Our final ontology contains 1740 objects,
620 attributes and 330 relations, grouped into a hierarchy
that consists of 60 different categories and subcategories.

Aspect VQA 2.0 GQA
Question length 6.2 + 1.9 7.9 + 3.1
Verbs 1.4 + 0.6 1.6 + 0.7
Nouns 1.9 + 0.9 2.5 + 1.0
Adjectives 0.6 + 0.6 0.7 + 0.7
Prepositions 0.5 + 0.5 1.0 + 1.0
Relation questions 19.5% 51.6%
Spatial questions 8% 22.4%
Logical questions 6% 19%
Comparative questions 1% 3%
OCR questions 3% 0%
Intention questions (why) 1.2% 0%
Where questions 2.9% 1.6%
Who questions 0.8% 6.1%
Counting questions 10.3% 0%
Short questions (≤ 5 words) 60% 22%
Compositional questions (semantically) 3% 52%

Table 2: A comparison between GQA and VQA 2.0. GQA ques-
tions are longer on average, more compositional and require more
reasoning: spatial, logical, relational, comparative. VQA ques-
tions cover additional types such as OCR, intention (why) and
counting (which we may include in an updated version of GQA).
Question types are not mutually exclusive.

Visualization of the ontology can be found in figure 2.
At the next step, we prune graph edges that sound unnat-

ural or are otherwise inadequate to be incorporated within
the questions to be generated, such as (woman, in, shirt),
(tail, attached to, giraffe), or (hand, hugging, bear). We
filter these triplets using a combination of category-based
rules, n-gram frequencies [1], dataset co-occurrence statis-
tics, and manual curation.

In order to generate correct and unambiguous questions,
some cases require us to validate the uniqueness or absence
of an object. Visual Genome, while meant to be as exhaus-
tive as possible, cannot guarantee full coverage (as it may be
practically infeasible). Hence, in those cases we use object
detectors [11], trained on visual genome with a low detec-
tion threshold, to conservatively confirm the object absence
or uniqueness. Here, object uniqueness can be validated by
confidently denying the existence of other same-class ob-
jects within the image.

Next, we augment the graph with absolute and relative
positional information: objects appearing within the image
margins, are annotated accordingly. Object pairs for which
we can safely determine positional relations (e.g., one is to
the left of the other), are annotated as well. We also an-
notate object pairs if they share the same color, material or
shape. Finally, we enrich the graph with global information
about the image location or weather, if these can be directly
inferred from the objects it contains.

By the end of this stage, the resulting scene graphs have
clean, unified, rich and unambiguous semantics for both the
nodes and the edges.



Figure 9: The interfaces used for human experiments on Amazon Mechanical Turk. Top: Each HIT displays several images and asks
turkers to list objects and annotate their corresponding bounding boxes. In addition, the turkers are requested to specify attributes and
relations between the objects. An option to switch between images is also given to allow the turkers to choose rich enough images to work
on. Bottom: Each HIT displays multiple questions and requires the turkers to respond. Since there is a closed set of possible answers
(from a vocabulary of 1878 possibilities), and in order to allow a fair comparison between human and models’ performance, we give turkers
the option to respond in unconstrained free-form language, but also suggest them multiple answers from our vocabulary that are the most
similar to theirs (using word embedding distances). However, turkers are not limited to choose from the suggestions in case they believe
none of the proposed answers is correct.
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