
Supplementary Material for:
On Stabilizing Generative Adversarial Training with Noise

1. Influence on the Generator Gradient Norm
We compare the norm of the generator gradient with and

without DF for a GAN trained with the original minimax
objective and a GAN trained with the alternative generator
objective maxG log(D(z)) in Figure 1. The models were
trained on CIFAR-10. We can observe the vanishing gradi-
ent phenomenon in Figure 1a when no distribution filtering
is applied. With our proposed method the gradient norms
are stable. In the case of the alternative loss in Figure 1b we
can observe that the gradient norms are orders of magnitude
higher when no distribution filtering is applied. This results
in highly unstable weight updates due to the overconfident
discriminator.

2. Experiments on synthetic data
We performed experiments with a standard GAN and a

DFGAN using Gaussian noise on synthetic 2-D data. The
generator and discriminator architectures are both MLPs
consisting of three fully-connected layers with a hidden-
layer size of 512. We use ReLU activations and batch-
normalization ([1]) in all but the first discriminator layer and
the output layers. The Adam optimzer ([2]) was used with
a learning rate of 10−4 and we trained for 20K iterations.
The results are shown in Figure 2. We can observe how the
matching of both clean and filtered distribution leads to a
better fit in the case of DFGAN.

3. Implementation Details
Noise Generator. The noise-generator architecture in all
our experiments is equivalent to the generator architecture
with the number of filters reduced by a factor of eight. The
output of the noise-generator has a tanh activation scaled
by a factor of two to allow more noise if necessary. We
also experimented with a linear activation but didn’t find a
significant difference in performance.
GAN+GP. For the comparisons to the GAN regularizer pro-
posed by [4] we used the same settings as used in their work
in experiments with DCGAN.
SNGAN+DF. We used the standard GAN loss (same as
DCGAN) in all our experiments with models using spec-
tral normalization. When combining SNGAN with DF we

(a) GAN with minimax loss

(b) GAN with alternative loss

Figure 1: We show the norm of the generator gradient over
the course of training for a GAN using the original minimax
objective in (a) and a GAN using the alternative objective
maxG log(D(z)) in (b).

batch-normalized the noisy inputs to the discriminator.

4. Qualitative Results for Experiments
We provide qualitative results for some of the ablation

experiments in Figure 3 and for the robustness experiments
in Figure 4. As we can see in Figure 4, none of the tested
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settings led to degenerate solutions in the case of DFGAN
while the other methods would show failure cases in some
settings.

5. Application to Progressive GAN
To test our method on a state-of-the-art GAN we applied

our training method to the progressive GAN model. We
used the DCGAN loss, trained for a total of 6M images
and did not use label conditioning. We used fixed Gaussian
noise for the distribution filtering. On CIFAR-10 progres-
siveGAN without DF achieved a FID of 29.4. Adding DF
improved the performance to 26.8. Note that the original
WGAN-GP loss in the same setup only achieved a FID of
29.8.

We also trained progressive-GAN+DF on higher resolu-
tion 256 × 256 images of LSUN bedrooms. See Figure 5
for results.
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(a) Standard GAN

(b) DFGAN with Gaussian noise

Figure 2: We performed experiments on synthetic 2D data with a standard GAN (top) and a DFGAN (bottom). The ground
truth data is shown in red and the model generated data is shown in blue. For DFGAN we also show samples from the blurred
data distribution pd,ε in green and the blurred model distribution pg,ε in purple.



(a) Standard GAN

(b) Noise only: ε ∼ N (0, I)

(c) Noise only: ε ∼ N (0, σI), σ → 0

(d) Clean + noise: ε ∼ N (0, I) (CIFAR-10)

(e) DFGAN (λ = 1)

Figure 3: We show random reconstructions for some of the ablation experiments listed in Table 2 of the paper. The left
column shows results on CIFAR-10 and the right column shows results on STL-10.



(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: We show random reconstructions for the robustness experiments (see Table 4). We compare a standard GAN (1st
column), a GAN with gradient penalty by [4] (2nd column), a GAN with spectral normalization by [3] (3rd column) and a
GAN with our proposed method (4th column).



Figure 5: Results of progressive-GAN+DF trained on LSUN bedrooms. We used the DCGAN loss and Gaussian noise for
DF in this experiment.


