
Learning 3D Human Dynamics from Video:
Supplementary Material

1. Model architecture
Temporal Encoder Figure 1 visualizes the architecture
of our temporal encoder fmovie. Each 1D convolution has
temporal kernel size 3 and filter size 2048. For group norm,
we use 32 groups each with 64 channels. We repeat the
residual block 3 times, which gives us a field of view of 13
frames.
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Figure 1: Architecture of the temporal encoder fmovie.

Hallucinator Our hallucinator consists of two fully-
connected layers of 2048 neurons, whose output gets added
to the original φ as a skip connection.

3D regressors Our f3D regresses the 85D Θt vector in an
iterative error feedback (IEF) loop [2, 4], where the cur-
rent estimates are progressively updated by the regressor.
Specifically, the regressor takes in the current image feature
φt and current parameter estimate Θ

(j)
t , and outputs cor-

rections ∆Θ
(j)
t . The current estimate gets updated by this

correction Θ
(j+1)
t = ∆Θ

(j)
t + Θ

(j)
t . This loop is repeated

3 times. We initialize the Θ
(0)
t to be the mean values Θ̄,

which we also update as a learned parameter.
The regressor consists of two fully-connected layers,

both with 1024 neurons, with a dropout layer in between,
followed by a final layer that outputs the 85D outputs. All
weights are shared.

The dynamics predictors f±∆t has a similar form, except
it only outputs the 72-D changes in pose θ, and the initial
estimate is set to the prediction of the current frame t, i.e.
θ

(0)
t+∆t = θt. Each f±∆t learns a separate set of weights.

2. Additional Ablations and Evaluations

In Table 1, we evaluate our method and comparable
methods on 2D/3D pose and 3D shape recovery. We pro-
vide another ablation of our approach where the constant
shape loss (Eq. 1) is not used (Ours – Const). In addition,
we include full results from our ablation studies.

Shape Evaluation To measure shape predictions, we re-
port Posed Mesh Error (Mesh Pos), which computes the
mean Euclidean distance between the predicted and ground
truth 3D meshes. Since this metric is affected by the qual-
ity of the pose predictions, we also report Unposed Mesh
Error (Mesh Unp), which computes the same but with a
fixed T-pose to evaluate shape independently of pose accu-
racy. Both metrics are in units of mm. Note that accurately
capturing the shape of the subject is challenging since only
4 ground truth shapes are available in Human3.6M when
training.

3. Failure Modes

While our experiments show promising results, there is
still room for improvement.

Smoothing Overall, our method obtains smooth results,
but it can struggle in challenging situations, such as person-
to-person occlusions or fast motions. Additionally, extreme
or rare poses (e.g. stretching, ballet) are difficult to capture.
Please refer to our supplementary video for examples.
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3DPW H3.6M Penn Action

PCK ↑ MPJPE ↓ PA-MPJPE ↓ Accel Err ↓ Mesh Pos ↓ Mesh Unp ↓ MPJPE ↓ PA-MPJPE ↓ Accel Err ↓ PCK ↑
Martinez et al. [5] - - 157.0 - - - 62.9 47.7 - -

SMPLify [1] - 199.2 106.1 - 211.2 61.2 - 82.3 - -
TP-Net [3] - 163.7 92.3 - - - 52.1 36.3 - -

Ours 86.4 127.1 80.1 16.4 144.4 25.8 87.0 58.1 9.3 77.9
Ours + VLOG 91.7 126.7 77.7 15.7 147.4 29.7 85.9 58.3 9.3 78.6

Ours + InstaVariety 92.9 116.5 72.6 14.3 138.6 26.7 83.7 56.9 9.3 78.7

Single-view retrained [4] 84.1 130.0 76.7 37.4 144.9 24.4 94.0 59.3 23.9 73.2
Ours – Dynamics 82.6 139.2 78.4 15.2 155.2 24.8 88.6 58.3 9.1 71.2

Ours – Const 86.5 128.3 78.2 16.6 145.9 27.5 83.5 57.8 9.3 78.1

Table 1: Evaluation of baselines, ablations, and our proposed method on 2D and 3D keypoints and 3D mesh. We compare with
three other feed-forward methods that predict 3D joints. None of the models are trained on 3DPW, all of the models are trained on H3.6M,
and only our models are trained on Penn Action (TP-Net also uses MPII 2D dataset). We show that training with pseudo-ground truth 2D
annotations significantly improves 2D and 3D predictions on the in-the-wild video dataset 3DPW. Single-view is retrained on our data.
Ours – Dynamics is trained without the past and future regressors f±∆t. Ours – Const is trained without Lconst shape.

Dynamics Prediction Clearly, predicting the past and fu-
ture dynamics from a single image is a challenging prob-
lem. Even for us humans, from a single image alone, many
motions are ambiguous. Figure 2 visualizes a canonical ex-
ample of such ambiguity, where it is unclear from the input
center image if she is about to raise her arms or lower them.
In these cases, our model learns to predict constant pose.

Furthermore, even the pose in a single image can be am-
biguous, for example due to motion blur in videos. Fig-
ure 3 illustrates a typical example, where the tennis player’s
arm has disappeared and therefore the model cannot discern
whether the person is facing left or right. When the current
frame prediction is poor, the resulting dynamics predictions
are also not correct, since the dynamics predictions are ini-
tialized from the pose of the current frame.

Note that incorporating temporal context resolves many
of these static-image ambiguities. Please see our supple-
mentary video for examples.
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Figure 2: Ambiguous motion. Dynamic prediction is diffi-
cult from the center image alone, where her arms may rea-
sonably lift or lower in the future.
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Figure 3: Ambiguous pose. The tennis player’s pose in
the input, center image is difficult to disambiguate between
hunched forward verses arched backward due to the motion
blur. This makes it challenging for our model to recover
accurate dynamics predictions from the single image.
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