

GPSfM: Global Projective SFM Using Algebraic Constraints on Multi-View Fundamental Matrices

-Supplementary Material-

Yoni Kasten*

Amnon Geifman*

Meirav Galun

Ronen Basri

Weizmann Institute of Science

{yoni.kasten,amnon.geifman,meirav.galun,ronen.basri}@weizmann.ac.il

Below we prove Theorem 1. For clarity, we base the proof on several supporting lemmas, whose proofs follow. Also, our proof of Theorem 1 relies partly on necessary conditions that were introduced and proved in [1]. Those conditions are summarized in Lemma 2.

Theorem 1. *An n -view fundamental matrix F is consistent with a set of n cameras whose centers are not all collinear if, and only if, the following conditions hold:*

1. *Rank(F) = 6 and F has exactly 3 positive and 3 negative eigenvalues.*
2. *Rank(F_i) = 3 for all $i = 1, \dots, n$.*

Proof. The proof of the necessary conditions relies the properties of symmetric matrices specified in Lemma 1 and on [1], whose derivations are summarized in Lemma 2. Specifically, let F be a consistent, n -view fundamental matrix. Then, according to Lemma 2, F can be written as $F = UV^T + VU^T$, where $U, V \in \mathbb{R}^{3n \times 3}$ whose 3×3 blocks respectively are $U_i = V_i T_i$ and V_i . And, moreover, since the camera centers are not all collinear, we have $\text{rank}(F) = 6$, $\text{rank}(U) = 3$ and $\text{rank}(V) = 3$, implying property (iii) of Lemma 1. Consequently, using property (i) of Lemma 1, condition 1 holds. Condition 2 holds because not all cameras are collinear, since if conversely $\text{rank}(F_i) < 3$ for some i then there exists a 3-vector $\mathbf{e} \neq 0$ such that $F_i^T \mathbf{e} = 0$, and therefore $\forall j F_{ji} \mathbf{e} = 0$, i.e., all epipoles collapse to the same point in frame i , implying, in contradiction, that the camera centers are all collinear.

To establish the sufficient condition, let F be an n -view fundamental matrix that satisfies conditions 1 and 2. Condition 1 (along with property (iii) of Lemma 1) implies that F can be decomposed into $F = UV^T + VU^T$. This decomposition, along with condition 2, allows to deduce, using Lemma 5, that WLOG $\forall i, \text{rank}(V_i) = 3$ and $\text{rank}(U_i) = 2$. This, and the skew-symmetry of $U_i V_i^T$ (due to $F_{ii} = 0$), imply, using Lemma 4, that $V_i^{-1} U_i$ is

skew-symmetric. Denote this matrix by $T_i = [t_i]_\times$, we obtain $F_{ij} = V_i(T_i - T_j)V_j^T$, establishing that F is consistent. Finally, $\{t_i\}_{i=1}^n$ are not all collinear, since, otherwise, by Lemma 6, $\exists i$ and $\exists \mathbf{e} \neq 0$ such that $\forall j F_{ji} \mathbf{e} = 0$, implying that $F_i^T \mathbf{e} = 0$, contradicting the full rank of F_i . \square

We next turn to stating and proving the supporting lemmas.

Lemma 1. *Let $F \in \mathbb{S}^{3n}$ be a matrix of rank 6. Then, the following three conditions are equivalent.*

- (i) *F has exactly 3 positive and 3 negative eigenvalues.*
- (ii) *$F = XX^T - YY^T$ with $X, Y \in \mathbb{R}^{3n \times 3}$ and $\text{rank}(X) = \text{rank}(Y) = 3$.*
- (iii) *$F = UV^T + VU^T$ with $U, V \in \mathbb{R}^{3n \times 3}$ and $\text{rank}(U) = \text{rank}(V) = 3$.*

Proof. Assume (i), and denote the eigenvalues of F by $\lambda_1 \geq \lambda_2 \geq \lambda_3 > 0 > \lambda_4 \geq \lambda_5 \geq \lambda_6$. Applying spectral decomposition to F we obtain

$$F = [\tilde{X}, \tilde{Y}] \begin{pmatrix} \Sigma_1 & 0 \\ 0 & -\Sigma_2 \end{pmatrix} [\tilde{X}, \tilde{Y}]^T = \tilde{X} \Sigma_1 \tilde{X}^T - \tilde{Y} \Sigma_2 \tilde{Y}^T,$$

where $\tilde{X}, \tilde{Y} \in \mathbb{R}^{3n \times 3}$, $\Sigma_1 = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$ and $\Sigma_2 = \text{diag}(-\lambda_4, -\lambda_5, -\lambda_6)$. Next, we define $X = \tilde{X} \sqrt{\Sigma_1}$ and $Y = \tilde{Y} \sqrt{\Sigma_2}$ then

$$F = XX^T - YY^T,$$

where $\text{rank}(X) = \text{rank}(Y) = 3$, implying (ii). Next, let $U = \sqrt{\frac{1}{2}}(X + Y)$ and $V = \sqrt{\frac{1}{2}}(X - Y)$. It can be readily verified that

$$F = UV^T + VU^T.$$

*Equal contributors

Moreover, if either U or V are rank deficient then $\text{rank}(F) < 6$, contradicting the assumption. Therefore, $\text{rank}(U) = \text{rank}(V) = 3$, implying (iii).

To complete the proof, assume (iii), i.e., $F = UV^T + VU^T$, where $U, V \in \mathbb{R}^{3n \times 3}$ are of rank 3. We define $X = \sqrt{\frac{1}{2}}(U + V)$ and $Y = \sqrt{\frac{1}{2}}(U - V)$ yielding $F = XX^T - YY^T$, with $\text{rank}(X) = \text{rank}(Y) = 3$, implying (ii).

It remains to show that (ii) \Rightarrow (i). Since F is symmetric of degree 6, it has exactly 6 real, non-zero eigenvalues. We now show that exactly 3 of these eigenvalues are positive and 3 are negative. By contradiction, assume w.l.o.g. that F has at least 4 positive eigenvalues, denoted by $\lambda_1, \lambda_2, \lambda_3, \lambda_4$, and denote their corresponding eigenvectors by v_1, v_2, v_3, v_4 . Denote the subspace spanned by these eigenvectors by S , i.e., $S = \text{span}\{v_1, v_2, v_3, v_4\}$. Now, due to orthogonality, for every $\sum_{i=1}^4 a_i v_i = z \in S$ we have

$$Fz = \sum_{i=1}^4 \alpha_i \lambda_i v_i \Rightarrow z^T Fz = \sum_{i=1}^4 \alpha_i^2 \lambda_i.$$

Therefore, since $\lambda_i > 0$, for $0 \neq z \in S$ we have,

$$z^T Fz = \sum_{i=1}^4 \alpha_i^2 \lambda_i > 0.$$

On the other hand, the dimension of the column space of X is at most 3 and therefore $\exists \bar{z} \in S$, which is orthogonal to the column space of X , i.e. $X^T \bar{z} = 0$, implying that

$$\bar{z}^T F \bar{z} = \bar{z}^T (XX^T - YY^T) \bar{z} = -\bar{z}^T YY^T \bar{z} \leq 0,$$

which contradicts our previous observation that every vector $0 \neq z \in S$ satisfies $z^T Fz > 0$. The same argument can be applied to the negative eigenvalues. We conclude that F has exactly 3 positive eigenvalues and 3 negative eigenvalues. \square

Lemma 2. [1] Let F be a consistent n -view fundamental matrix. Then,

1. F can be formulated as $F = UV^T + VU^T$, where $V, U \in \mathbb{R}^{3n \times 3}$ consist of n blocks of size 3×3

$$V = \begin{bmatrix} V_1 \\ \vdots \\ V_n \end{bmatrix} \quad U = \begin{bmatrix} V_1 T_1 \\ \vdots \\ V_n T_n \end{bmatrix}$$

and $T_i = [\mathbf{t}_i]_\times$.

2. $\text{rank}(V) = 3$
3. If \mathbf{t}_i are not all collinear then $\text{rank}(U) = 3$ and $\text{rank}(F) = 6$.

Proof. Condition 1 follows directly from Eq. (1) in the paper, namely

$$F_{ij} = V_i(T_i - T_j)V_j^T.$$

Condition 2 is satisfied since V_i is invertible for all $i = 1, \dots, n$. Next, we prove Condition 3 by contradiction. Assume $\text{rank}(U) < 3$. Then, $\exists \mathbf{t} \neq 0$, s.t. $U\mathbf{t} = 0$. Since V_i are of full rank for all $i = 1, \dots, n$, this implies that $\mathbf{t}_i \times \mathbf{t} = 0$ for all $i = 1, \dots, n$. Thus, all the \mathbf{t}_i 's are parallel to \mathbf{t} , violating our assumption that not all \mathbf{t}_i are collinear.

We are left to show that if \mathbf{t}_i are not all collinear then $\text{rank}(F) = 6$. Using the QR decomposition for an invertible matrix, each V_i can be decomposed uniquely into a product of a lower triangular matrix with positive diagonal elements and an orthogonal matrix. Therefore, there exist an upper triangular K_i and an orthogonal matrix R_i such that $V_i = K_i^{-T} R_i^T$. We can thus write $F = K^T E K$, where the $3n \times 3n$ matrix K is a block diagonal matrix with 3×3 blocks formed by $\{K_i^{-1}\}_{i=1}^n$, and so it has full rank, implying that $\text{rank}(F) = \text{rank}(E)$. We are left to show that $\text{rank}(E) = 6$. Since E has the same form as in [1], the proof can be completed as described there ([1], p. 3). \square

Lemma 3. Let $A, B \in \mathbb{R}^{3 \times 3}$ such that $\text{rank}(A) = \text{rank}(B) = 2$ and $AB^T = [\mathbf{t}]_\times$ for some $\mathbf{t} \in \mathbb{R}^3$ then $A^T \mathbf{t} = B^T \mathbf{t} = 0$

Proof. Let $\mathbf{t}_1 \in \text{Ker}(A^T)$ and $\mathbf{t}_2 \in \text{Ker}(B^T)$, $\mathbf{t}_1, \mathbf{t}_2 \neq 0$. Note also that $AB^T = [\mathbf{t}]_\times$ implies $BA^T = -[\mathbf{t}]_\times$. Then,

$$\begin{aligned} A^T \mathbf{t}_1 = 0 \Rightarrow BA^T \mathbf{t}_1 = 0 \Rightarrow -\mathbf{t} \times \mathbf{t}_1 = 0 \\ \Rightarrow \mathbf{t}_1 \parallel \mathbf{t} \Rightarrow A^T \mathbf{t} = 0. \end{aligned}$$

$$\begin{aligned} B^T \mathbf{t}_2 = 0 \Rightarrow AB^T \mathbf{t}_2 = 0 \Rightarrow \mathbf{t} \times \mathbf{t}_2 = 0 \\ \Rightarrow \mathbf{t}_2 \parallel \mathbf{t} \Rightarrow B^T \mathbf{t} = 0 \end{aligned}$$

\square

Lemma 4. Let $A, B \in \mathbb{R}^{3 \times 3}$ with $\text{rank}(A) = 2$, $\text{rank}(B) = 3$ and AB^T is skew symmetric (that is $AB^T + BA^T = 0$), then $T = B^{-1}A$ is skew symmetric.

Proof. Since AB^T is skew symmetric it can be written as $AB^T = [\mathbf{a}]_\times$ for some $\mathbf{a} \in \mathbb{R}^3 \Rightarrow$

$$\begin{aligned} A = [\mathbf{a}]_\times B^{-T} &= BB^{-1}[\mathbf{a}]_\times B^{-T} \\ &= B(B^{-1}[\mathbf{a}]_\times B^{-T}) \\ &= B \frac{[B^T \mathbf{a}]_\times}{\det(B)} \end{aligned}$$

where the last equality follows from the following identity which holds for $B \in \mathbb{R}^{3 \times 3}$

$$(B\mathbf{x}) \times (B\mathbf{y}) = \det(B)B^{-T}(\mathbf{x} \times \mathbf{y}).$$

Consequently, $T = B^{-1}A = \frac{[B^T \mathbf{a}]_\times}{\det(B)}$ is skew symmetric. \square

Lemma 5. Let F be an n -view fundamental matrix. If F can be formulated as $F = UV^T + VU^T$ where $U, V \in \mathbb{R}^{3n \times 3}$ and in addition $\text{rank}(F_i) = 3$ for $i = 1, \dots, n$ then it holds that either $\forall i \text{rank}(V_i) = 3, \text{rank}(U_i) = 2$ or that $\forall i \text{rank}(V_i) = 2, \text{rank}(U_i) = 3$.

Proof. First, since $\forall i F_{ii} = 0$, it follows that $\forall i U_i V_i^T$ is skew-symmetric, implying that $\text{rank}(U_i V_i^T) = 2$, and so both $2 \leq \text{rank}(U_i) \leq 3$ and $2 \leq \text{rank}(V_i) \leq 3$, but both cannot have full rank. Of the remaining possibilities.

1. $\exists i$ such that $\text{rank}(U_i) = \text{rank}(V_i) = 2$. According to Lemma 3, $\exists \mathbf{t} \in \mathbb{R}^3$, such that $U_i^T \mathbf{t} = V_i^T \mathbf{t} = 0$, implying that $F_i^T \mathbf{t} = (VU_i^T + UV_i^T) \mathbf{t} = 0$. However, this contradicts the full rank assumption over F_i .

2. Suppose, without loss of generality, that

$$\begin{aligned} \text{rank}(V_1) &= 3, \text{rank}(U_1) = 2 \\ \text{rank}(V_2) &= 2, \text{rank}(U_2) = 3. \end{aligned}$$

By Lemma 4, since $U_1 V_1^T$ is skew symmetric and $\text{rank}(V_1) = 3, \text{rank}(U_1) = 2$, we obtain that $T_1 = V_1^{-1} U_1$ is skew symmetric. By similar considerations $T_2 = U_2^{-1} V_2$ is skew symmetric. This yields

$$\begin{aligned} F_{12} &= U_1 V_2^T + V_1 U_2^T \\ &= V_1 T_1 (-T_2) U_2^T + V_1 U_2^T \\ &= V_1 (-T_1 T_2 + I) U_2^T. \end{aligned}$$

Now, using the fact that $\text{rank}(V_1) = \text{rank}(U_2) = 3$, we obtain

$$\text{rank}(-T_1 T_2 + I) = \text{rank}(F_{12}) = 2. \quad (1)$$

In the next steps we show a contradiction to (1). Since $\text{rank}(-T_1 T_2 + I) = 2$ then $\exists \mathbf{v} \in \text{null}(-T_1 T_2 + I), \mathbf{v} \neq 0$ for which

$$\begin{aligned} (-T_1 T_2 + I) \mathbf{v} &= 0 \Rightarrow T_1 T_2 \mathbf{v} = \mathbf{v} \\ &\Rightarrow \mathbf{t}_1 \times (\mathbf{t}_2 \times \mathbf{v}) = \mathbf{v}. \end{aligned}$$

We conclude that $\mathbf{t}_1^T \mathbf{v} = 0$. Using the identity $a \times (b \times c) = b(a^T c) - c(a^T b)$, we obtain

$$\begin{aligned} \mathbf{t}_1 \times (\mathbf{t}_2 \times \mathbf{v}) &= \mathbf{v} \Rightarrow \\ \mathbf{t}_2(\mathbf{t}_1^T \mathbf{v}) - \mathbf{v}(\mathbf{t}_1^T \mathbf{t}_2) &= \mathbf{v} \Rightarrow \\ -\mathbf{v}(\mathbf{t}_1^T \mathbf{t}_2) &= \mathbf{v} \Rightarrow \\ (\mathbf{t}_1^T \mathbf{t}_2) &= -1. \end{aligned}$$

Now, the subspace defined by $\{\mathbf{u} \in \mathbb{R}^3 | \mathbf{t}_1^T \mathbf{u} = 0\}$ is of dimension 2. However, as we show below, it is contained in $\text{null}(-T_1 T_2 + I)$, contradicting (1), since any vector \mathbf{u} in this space satisfies

$$\begin{aligned} (-T_1 T_2 + I) \mathbf{u} &= -\mathbf{t}_1 \times (\mathbf{t}_2 \times \mathbf{u}) + \mathbf{u} \\ &= -\mathbf{t}_2(\mathbf{t}_1^T \mathbf{u}) + \mathbf{u}(\mathbf{t}_1^T \mathbf{t}_2) + \mathbf{u} \\ &= -\mathbf{u} + \mathbf{u} = 0. \end{aligned}$$

Consequently, either $\forall i \text{rank}(V_i) = 3, \text{rank}(U_i) = 2$ or $\forall i \text{rank}(V_i) = 2, \text{rank}(U_i) = 3$. \square

For the next Lemma we note that in Lemma 5 and Theorem 1 we use the following property, which we justify below $\text{rank}(F_i) = 3 \Leftrightarrow \text{rank}(F_i^T) = 3 \Leftrightarrow \text{null}(F_i^T) = \emptyset \Leftrightarrow \nexists \mathbf{t} \in \mathbb{R}^3, \mathbf{t} \neq 0, \text{s.t. } F_i^T \mathbf{t} = 0 \Leftrightarrow \nexists \mathbf{t} \in \mathbb{R}^3, \mathbf{t} \neq 0, \text{s.t. } \forall j F_{ji} \mathbf{t} = 0$.

Lemma 6. Let $V_1, \dots, V_n \in \mathbb{R}^{3 \times 3}$ and $\mathbf{t}_1, \dots, \mathbf{t}_n \in \mathbb{R}^3$. We define $F_{ij} = V_i [\mathbf{t}_i - \mathbf{t}_j] \times V_j^T$ and assume that for $i \neq j \text{rank}(F_{ij}) = 2$. Then, $\{\mathbf{t}_i\}_{i=1}^n$ are collinear if and only if $\exists i \in \{1, \dots, n\}$ and $\exists \mathbf{e} \in \mathbb{R}^3, \mathbf{e} \neq 0, \text{s.t. } \forall j F_{ji} \mathbf{e} = 0$.

Proof. \Rightarrow We first assume that $\{\mathbf{t}_i\}_{i=1}^n$ are collinear. We show it by construction. Let us choose $i \neq 1$ and define

$$\mathbf{e} = V_i^{-1}(\mathbf{t}_i - \mathbf{t}_1).$$

Since $\mathbf{t}_i \neq \mathbf{t}_1$ (otherwise the rank assumption is violated) then $\mathbf{e} \neq 0$ and the collinear points $\mathbf{t}_1, \dots, \mathbf{t}_n$ can be parameterized as follows

$$\mathbf{t}_k = \mathbf{t}_1 + \alpha_k(\mathbf{t}_i - \mathbf{t}_1) \quad \forall k.$$

Now, $\forall j$ it holds that

$$\begin{aligned} F_{ji} \mathbf{e} &= V_j(\mathbf{t}_j - \mathbf{t}_i) \times V_i^T V_i^{-T}(\mathbf{t}_i - \mathbf{t}_1) \\ &= V_j(\mathbf{t}_j - \mathbf{t}_i) \times (\mathbf{t}_i - \mathbf{t}_1) \\ &= V_j((\alpha_j - \alpha_i)(\mathbf{t}_i - \mathbf{t}_1)) \times (\mathbf{t}_i - \mathbf{t}_1) = 0. \end{aligned}$$

\Leftarrow Without loss of generality, we assume that $i \neq 1$. Therefore, $\exists \mathbf{e} \in \mathbb{R}^3, \mathbf{e} \neq 0$ s.t $\forall j F_{ji} \mathbf{e} = 0$. Since $F_{1i} = V_1 [\mathbf{t}_1 - \mathbf{t}_i] \times V_i^T \Rightarrow V_i^{-T}(\mathbf{t}_i - \mathbf{t}_1) \in \text{null}(F_{1i})$. Assuming that $\text{rank}(F_{1i}) = 2$ then the dimension of $\text{null}(F_{1i})$ is 1, implying that $\mathbf{e} = \alpha V_i^{-T}(\mathbf{t}_i - \mathbf{t}_1)$, where $\alpha \neq 0$ is a scalar. Now, $\forall j$

$$\begin{aligned} F_{ji} \mathbf{e} &= 0 \Rightarrow V_j[\mathbf{t}_j - \mathbf{t}_i] \times V_i^T V_i^{-T}(\mathbf{t}_i - \mathbf{t}_1) = 0 \\ &\Rightarrow V_j[\mathbf{t}_j - \mathbf{t}_i] \times (\mathbf{t}_i - \mathbf{t}_1) = 0 \\ &\Rightarrow (\mathbf{t}_j - \mathbf{t}_i) \times (\mathbf{t}_i - \mathbf{t}_1) = 0 \\ &\Rightarrow \exists \alpha_j \in \mathbb{R} \text{ s.t. } \mathbf{t}_j - \mathbf{t}_i = \alpha_j(\mathbf{t}_i - \mathbf{t}_1) \\ &\Rightarrow \mathbf{t}_j = \mathbf{t}_i + \alpha_j(\mathbf{t}_i - \mathbf{t}_1) \end{aligned}$$

concluding that the points are collinear. \square

References

- [1] S. Sengupta, T. Amir, M. Galun, T. Goldstein, D. W. Jacobs, A. Singer, and R. Basri. A new rank constraint on multi-view fundamental matrices, and its application to camera location recovery. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 4798–4806, 2017.