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Below we prove Theorem 1. For clarity, we base the
proof on several supporting lemmas, whose proofs follow.
Also, our proof of Theorem 1 relies partly on necessary con-
ditions that were introduced and proved in [1]. Those con-
ditions are summarized in Lemma 2.

Theorem 1. An n-view fundamental matrix F is consistent
with a set of n cameras whose centers are not all collinear
if, and only if, the following conditions hold:

1. Rank(F ) = 6 and F has exactly 3 positive and 3 neg-
ative eigenvalues.

2. Rank(Fi) = 3 for all i = 1, ..., n.

Proof. The proof of the necessary conditions relies the
properties of symmetric matrices specified in Lemma 1 and
on [1], whose derivations are summarized in Lemma 2.
Specifically, let F be a consistent, n-view fundamental ma-
trix. Then, according to Lemma 2, F can be written as
F = UV T + V UT , where U, V ∈ R3n×3 whose 3 × 3
blocks respectively are Ui = ViTi and Vi. And, more-
over, since the camera centers are not all collinear, we have
rank(F ) = 6, rank(U) = 3 and rank(V ) = 3, imply-
ing property (iii) of Lemma 1. Consequently, using prop-
erty (i) of Lemma 1, condition 1 holds. Condition 2 holds
because not all cameras are collinear, since if conversely
rank(Fi) < 3 for some i then there exists a 3-vector e 6= 0
such that FT

i e = 0, and therefore ∀j Fjie = 0, i.e., all
epipoles collapse to the same point in frame i, implying, in
contradiction, that the camera centers are all collinear.

To establish the sufficient condition, let F be an n-
view fundamental matrix that satisfies conditions 1 and 2.
Condition 1 (along with property (iii) of Lemma 1) im-
plies that F can be decomposed into F = UV T + V UT .
This decomposition, along with condition 2, allows to de-
duce, using Lemma 5, that WLOG ∀i, rank(Vi) = 3 and
rank(Ui) = 2. This, and the skew-symmetry of UiV

T
i

(due to Fii = 0), imply, using Lemma 4, that V −1
i Ui is
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skew-symmetric. Denote this matrix by Ti = [ti]×, we ob-
tain Fij = Vi(Ti−Tj)V T

j , establishing that F is consistent.
Finally, {ti}n

i=1 are not all collinear, since, otherwise, by
Lemma 6, ∃i and ∃e 6= 0 such that ∀j Fjie = 0, implying
that FT

i e = 0, contradicting the full rank of Fi.

We next turn to stating and proving the supporting lem-
mas.

Lemma 1. Let F ∈ S3n be a matrix of rank 6. Then, the
following three conditions are equivalent.

(i) F has exactly 3 positive and 3 negative eigenvalues.

(ii) F = XXT − Y Y T with X,Y ∈ R3n×3 and
rank(X) = rank(Y ) = 3.

(iii) F = UV T + V UT with U, V ∈ R3n×3 and
rank(U) = rank(V ) = 3.

Proof. Assume (i), and denote the eigenvalues of F by
λ1 ≥ λ2 ≥ λ3 > 0 > λ4 ≥ λ5 ≥ λ6. Applying spec-
tral decomposition to F we obtain

F = [X̃, Ỹ ]

(
Σ1 0
0 −Σ2

)

[X̃, Ỹ ]T

= X̃Σ1X̃
T − Ỹ Σ2Ỹ

T ,

where X̃, Ỹ ∈ R3n×3, Σ1 = diag(λ1, λ2, λ3) and Σ2 =
diag(−λ4,−λ5,−λ6). Next, we define X = X̃

√
Σ1 and

Y = Ỹ
√

Σ2 then

F = XXT − Y Y T ,

where rank(X) = rank(Y ) = 3, implying (ii). Next, let

U =
√

1
2 (X + Y ) and V =

√
1
2 (X − Y ). It can be readily

verified that
F = UV T + V UT .
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Moreover, if either U or V are rank deficient then
rank(F ) < 6, contradicting the assumption. Therefore,
rank(U) = rank(V ) = 3, implying (iii).

To complete the proof, assume (iii), i.e., F = UV T +
V UT , where U, V ∈ R3n×3 are of rank 3. We define X =√

1
2 (U + V ) and Y =

√
1
2 (U − V ) yielding F = XXT −

Y Y T , with rank(X) = rank(Y ) = 3, implying (ii).
It remains to show that (ii) ⇒ (i). Since F is sym-

metric of degree 6, it has exactly 6 real, non-zero eigen-
values. We now show that exactly 3 of these eigenvalues
are positive and 3 are negative. By contradiction, assume
w.l.o.g. that F has at least 4 positive eigenvalues, denoted
by λ1, λ2, λ3, λ4, and denote their corresponding eigenvec-
tors by v1, v2, v3, v4. Denote the subspace spanned by these
eigenvectors by S, i.e., S = span{v1, v2, v3, v4}. Now, due
to orthogonality, for every

∑4
i=1 aivi = z ∈ S we have

Fz =
4∑

i=1

αiλivi ⇒ zT Fz =
4∑

i=1

α2
i λi.

Therefore, since λi > 0, for 0 6= z ∈ S we have,

zT Fz =
4∑

i=1

α2
i λi > 0.

On the other hand, the dimension of the column space of X
is at most 3 and therefore ∃z̄ ∈ S, which is orthogonal to
the column space of X , i.e. XT z̄ = 0, implying that

z̄T F z̄ = z̄T (XXT − Y Y T )z̄ = −z̄T Y Y T z̄ ≤ 0,

which contradicts our previous observation that every vec-
tor 0 6= z ∈ S satisfies zT Fz > 0. The same argument can
be applied to the negative eigenvalues. We conclude that F
has exactly 3 positive eigenvalues and 3 negative eigenval-
ues.

Lemma 2. [1] Let F be a consistent n-view fundamental
matrix. Then,

1. F can be formulated as F = UV T + V UT , where
V,U ∈ R3n×3 consist of n blocks of size 3 × 3

V =






V1

...
Vn




 U =






V1T1

...
VnTn






and Ti = [ti]×.

2. rank(V ) = 3

3. If ti are not all collinear then rank(U) = 3 and
rank(F ) = 6.

Proof. Condition 1 follows directly from Eq. (1) in the pa-
per, namely

Fij = Vi(Ti − Tj)V
T
j .

Condition 2 is satisfied since Vi is invertible for all i =
1, ..., n. Next, we prove Condition 3 by contradiction. As-
sume rank(U) < 3. Then, ∃t 6= 0, s.t. Ut = 0. Since
Vi are of full rank for all i = 1, ..., n, this implies that
ti × t = 0 for all i = 1, ..., n. Thus, all the ti’s are parallel
to t, violating our assumption that not all ti are collinear.

We are left to show that if ti are not all collinear then
rank(F ) = 6. Using the QR decomposition for an in-
vertible matrix, each Vi can be decomposed uniquely into
a product of a lower triangular matrix with positive diag-
onal elements and an orthogonal matrix. Therefore, there
exist an upper triangular Ki and an orthogonal matrix Ri

such that Vi = K−T
i RT

i . We can thus write F = KT EK,
where the 3n×3n matrix K is a block diagonal matrix with
3 × 3 blocks formed by {K−1

i }n
i=1, and so it has full rank,

implying that rank(F ) = rank(E). We are left to show
that rank(E) = 6. Since E has the same form as in [1], the
proof can be completed as described there ([1], p. 3).

Lemma 3. Let A,B ∈ R3×3such that rank(A) =
rank(B) = 2 and ABT = [t]× for some t ∈ R3 then
AT t = BT t = 0

Proof. Let t1 ∈ Ker(AT ) and t2 ∈ Ker(BT ), t1, t2 6= 0.
Note also that ABT = [t]× implies BAT = −[t]×. Then,

AT t1 = 0 ⇒ BAT t1 = 0 ⇒ −t × t1 = 0

⇒ t1 ‖ t ⇒ AT t = 0.

BT t2 = 0 ⇒ ABT t2 = 0 ⇒ t × t2 = 0

⇒ t2 ‖ t ⇒ BT t = 0

Lemma 4. Let A,B ∈ R3×3 with rank(A) =
2, rank(B) = 3 and ABT is skew symmetric (that is
ABT + BAT = 0) , then T = B−1A is skew symmetric.

Proof. Since ABT is skew symmetric it can be written as
ABT = [a]× for some a ∈ R3 ⇒

A = [a]×B−T = BB−1[a]×B−T

= B(B−1[a]×B−T )

= B
[BT a]×
det(B)

where the last equality follows from the following identity
which holds for B ∈ R3×3

(Bx) × (By) = det(B)B−T (x × y).

Consequently, T = B−1A = [BT a]×
det(B) is skew symmetric.



Lemma 5. Let F be an n-view fundamental matrix. If F
can be formulated as F = UV T + V UT where U, V ∈
R3n×3 and in addition rank(Fi) = 3 for i = 1, . . . , n then
it holds that either ∀i rank(Vi) = 3, rank(Ui) = 2 or that
∀i rank(Vi) = 2, rank(Ui) = 3.

Proof. First, since ∀i Fii = 0, it follows that ∀i UiV
T
i is

skew-symmetric, implying that rank(UiV
T
i ) = 2, and so

both 2 ≤ rank(Ui) ≤ 3 and 2 ≤ rank(Vi) ≤ 3, but both
cannot have full rank. Of the remaining possibilities.

1. ∃i such that rank(Ui) = rank(Vi) = 2. According
to Lemma 3, ∃t ∈ R3, such that UT

i t = V T
i t = 0,

implying that FT
i t = (V UT

i +UV T
i )t = 0. However,

this contradicts the full rank assumption over Fi.

2. Suppose, without loss of generality, that

rank(V1) = 3, rank(U1) = 2

rank(V2) = 2, rank(U2) = 3.

By Lemma 4, since U1V
T
1 is skew symmetric and

rank(V1) = 3, rank(U1) = 2, we obtain that T1 =
V −1

1 U1 is skew symmetric. By similar considerations
T2 = U−1

2 V2 is skew symmetric. This yields

F12 = U1V
T
2 + V1U

T
2

= V1T1(−T2)U
T
2 + V1U

T
2

= V1(−T1T2 + I)UT
2 .

Now, using the fact that rank(V1) = rank(U2) = 3,
we obtain

rank(−T1T2 + I) = rank(F12) = 2. (1)

In the next steps we show a contradiction to (1). Since
rank(−T1T2 + I) = 2 then ∃v ∈ null(−T1T2 + I),
v 6= 0 for which

(−T1T2 + I)v = 0 ⇒ T1T2v = v

⇒ t1 × (t2 × v) = v.

We conclude that tT
1 v = 0. Using the identity a×(b×

c) = b(aT c) − c(aT b), we obtain

t1 × (t2 × v) = v ⇒

t2(t
T
1 v) − v(tT

1 t2) = v ⇒

−v(tT
1 t2) = v ⇒

(tT
1 t2) = −1.

Now, the subspace defined by {u ∈ R3|tT
1 u = 0}

is of dimension 2. However, as we show below, it is
contained in null(−T1T2 +I), contradicting (1), since
any vector u in this space satisfies

(−T1T2 + I)u = −t1 × (t2 × u) + u

= −t2(t
T
1 u) + u(tT

1 t2) + u

= −u + u = 0.

Consequently, either ∀i rank(Vi) = 3, rank(Ui) = 2 or
∀i rank(Vi) = 2, rank(Ui) = 3.

For the next Lemma we note that in Lemma 5 and The-
orem 1 we use the following property, which we justify be-
low rank(Fi) = 3 ⇔ rank(FT

i ) = 3 ⇔ null(FT
i ) =

∅ ⇔ @t ∈ R3, t 6= 0, s.t. FT
i t = 0 ⇔ @t ∈ R3, t 6= 0, s.t.

∀jFjit = 0.

Lemma 6. Let V1, ..., Vn ∈ R3×3 and t1, ..., tn ∈ R3.
We define Fij = Vi[ti − tj ]×V T

j and assume that for
i 6= j rank(Fij) = 2. Then, {ti}n

i=1 are collinear if and
only if ∃i ∈ {1, ..., n} and ∃e ∈ R3, e 6= 0, s.t. ∀jFjie = 0.

Proof. ⇒ We first assume that {ti}n
i=1 are collinear. We

show it by construction. Let us choose i 6= 1 and define

e = V −1
i (ti − t1).

Since ti 6= t1 (otherwise the rank assumption is violated)
then e 6= 0 and the collinear points t1, . . . , tn can be pa-
rameterized as follows

tk = t1 + αk(ti − t1) ∀k.

Now, ∀j it holds that

Fjie = Vj(tj − ti)×V T
i V −T

i (ti − t1)

= Vj(tj − ti) × (ti − t1)

= Vj((αj − αi)(ti − t1)) × (ti − t1)) = 0.

⇐ Without loss of generality, we assume that i 6= 1. There-
fore, ∃e ∈ R3, e 6= 0 s.t ∀j Fjie = 0. Since F1i =
V1[t1 − ti]×V T

i ⇒ V −T
i (ti − t1) ∈ null(F1i). Assuming

that rank(F1i) = 2 then the dimension of null(F1i) is 1,
implying that e = αV −T

i (ti − t1), where α 6= 0 is a scalar.
Now, ∀j

Fjie = 0 ⇒ Vj [tj − ti]×V T
i V −T

i (ti − t1) = 0

⇒ Vj [tj − ti]×(ti − t1) = 0

⇒ (tj − ti) × (ti − t1) = 0

⇒ ∃αj ∈ R s.t. tj − ti = αj(ti − t1)

⇒ tj = ti + αj(ti − t1)

concluding that the points are collinear.
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