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Below we prove Theorem 1. For clarity, we base the
proof on several supporting lemmas, whose proofs follow.
Also, our proof of Theorem 1 relies partly on necessary con-
ditions that were introduced and proved in [1]. Those con-
ditions are summarized in Lemma 2.

Theorem 1. An n-view fundamental matrix F' is consistent
with a set of n cameras whose centers are not all collinear
if, and only if, the following conditions hold:

1. Rank(F') = 6 and F has exactly 3 positive and 3 neg-
ative eigenvalues.

2. Rank(F;) =3 foralli=1,...,n.

Proof. The proof of the necessary conditions relies the
properties of symmetric matrices specified in Lemma | and
on [1], whose derivations are summarized in Lemma 2.
Specifically, let F' be a consistent, n-view fundamental ma-
trix. Then, according to Lemma 2, F' can be written as
F = UVT + VU7, where U,V € R3*3 whose 3 x 3
blocks respectively are U; = V;T; and V;. And, more-
over, since the camera centers are not all collinear, we have
rank(F) = 6, rank(U) = 3 and rank(V) = 3, imply-
ing property (iii) of Lemma 1. Consequently, using prop-
erty (i) of Lemma 1, condition 1 holds. Condition 2 holds
because not all cameras are collinear, since if conversely
rank(F;) < 3 for some 7 then there exists a 3-vector e # 0
such that FiTe = 0, and therefore Vj Fj;e = 0, ie., all
epipoles collapse to the same point in frame ¢, implying, in
contradiction, that the camera centers are all collinear.

To establish the sufficient condition, let /' be an n-
view fundamental matrix that satisfies conditions 1 and 2.
Condition 1 (along with property (iii) of Lemma 1) im-
plies that F' can be decomposed into F = UVT + VUT.
This decomposition, along with condition 2, allows to de-
duce, using Lemma 5, that WLOG Vi, rank(V;) = 3 and
rank(U;) = 2. This, and the skew-symmetry of U;V, "
(due to F;; = 0), imply, using Lemma 4, that Vi_le- is

*Equal contributors

skew-symmetric. Denote this matrix by T; = [t;]«, we ob-
tain F; = V;(T; — Tj)VjT, establishing that F is consistent.
Finally, {t;}}_, are not all collinear, since, otherwise, by
Lemma 6, 3¢ and Je # 0 such that Vj Fj;e = 0, implying
that FZ»Te = 0, contradicting the full rank of F3.

O

We next turn to stating and proving the supporting lem-
mas.

Lemma 1. Let F € S3" be a matrix of rank 6. Then, the
following three conditions are equivalent.

(i) F has exactly 3 positive and 3 negative eigenvalues.

(i) F = XXT — YY" with XY € R**3 and
rank(X) = rank(Y) = 3.

(iii) F = UVT + VUT with U,V € R3™*3 and
rank(U) = rank(V) = 3.

Proof. Assume (i), and denote the eigenvalues of F' by
A1 > X > A3 >0 > M\ > A5 > Xg. Applying spec-
tral decomposition to F' we obtain

S0 oo
oy, )ET

=X XT -y, v7T,

Fz[f(,ﬁ(

where X,Y € R¥3, %, = diag(\, A2, \3) and £y =
diag(—A4, —As, —Xg). Next, we define X = X/%; and
Y =Y /35 then

F=XXT_yyT,

where rank(X) = rank(Y) = 3, implying (if). Next, let

U— \/g(X—i—Y) and V = \/g(X —Y). It can be readily
verified that
F=uv'+vu'.



Moreover, if either U or V are rank deficient then
rank(F) < 6, contradicting the assumption. Therefore,
rank(U) = rank(V) = 3, implying (iif).

To complete the proof, assume (iii), i.e., F = UV +
VUT, where U,V € R3%3 are of rank 3. We define X =

VEU V) andY = \[1(U - V) yielding F = XX —
YY7T, with rank(X) = rank(Y) = 3, implying (ii).

It remains to show that (if) = (i). Since F' is sym-
metric of degree 6, it has exactly 6 real, non-zero eigen-
values. We now show that exactly 3 of these eigenvalues
are positive and 3 are negative. By contradiction, assume
w.l.o.g. that F' has at least 4 positive eigenvalues, denoted
by A1, A2, A3, A4, and denote their corresponding eigenvec-
tors by v, ve, v3, v4. Denote the subspace spanned by these
eigenvectors by S, i.e., S = span{vy, v, vs, v4}. Now, due
to orthogonality, for every Z?Zl a;v; = z € S we have

4 4
Fz= Zai)\ivi = TFz = Zaf)\i.
i=1 i=1
Therefore, since A; > 0, for 0 # z € S we have,
4
2TFz = Za?/\i > 0.

i=1

On the other hand, the dimension of the column space of X
is at most 3 and therefore 32 € S, which is orthogonal to
the column space of X, i.e. X7z = 0, implying that

Pz =:T(XXT -yYyT)z=-:Tyvy"z <0,

which contradicts our previous observation that every vec-
tor 0 # 2 € S satisfies z7 Fz > 0. The same argument can
be applied to the negative eigenvalues. We conclude that F’
has exactly 3 positive eigenvalues and 3 negative eigenval-
ues. O

Lemma 2. [/] Let F' be a consistent n-view fundamental
matrix. Then,

1. F can be formulated as F = UVT + VU7, where
V,U € R3™*3 consist of n blocks of size 3 x 3

Vi T

Vi V. T,
and T; = [t;]«.
2. rank(V) =3

3. If t; are not all collinear then rank(U) = 3 and
rank(F) = 6.

Proof. Condition 1 follows directly from Eq. (1) in the pa-
per, namely
Fyj = Vi(T; = T;)V}".

Condition 2 is satisfied since V; is invertible for all ¢ =
1,...,n. Next, we prove Condition 3 by contradiction. As-
sume rank(U) < 3. Then, 3t # 0, s.t. Ut = 0. Since
V; are of full rank for all ¢ = 1,...,n, this implies that
t; xt =0foralli =1,...,n. Thus, all the t;’s are parallel
to t, violating our assumption that not all t; are collinear.

We are left to show that if t; are not all collinear then
rank(F) = 6. Using the QR decomposition for an in-
vertible matrix, each V; can be decomposed uniquely into
a product of a lower triangular matrix with positive diag-
onal elements and an orthogonal matrix. Therefore, there
exist an upper triangular K; and an orthogonal matrix R;
such that V; = K; T RY. We can thus write F = K" EK,
where the 3n X 3n matrix K is a block diagonal matrix with
3 x 3 blocks formed by { K P ! ™ 1, and so it has full rank,
implying that rank(F) = rank(E). We are left to show
that rank(F) = 6. Since F has the same form as in [ 1], the
proof can be completed as described there ([ 1], p. 3). ]

Lemma 3. Let A, B € R3>*3such that rank(A) =
rank(B) = 2 and ABT = [t]« for some t € R? then
ATt =BTt =0

Proof. Lett, € Ker(AT) and to € Ker(BT), t1,ts # 0.
Note also that ABT = [t], implies BAT = —[t]«. Then,
ATt =0=BATt; =0= -t xt; =0

=t | t= ATt =0.

BTty =0= ABTt; =0=t Xty =0
=ty |t=BTt=0
O

Lemma 4. Let A/B € R3>*3 with rank(A) =
2, rank(B) = 3 and ABT is skew symmetric (that is
ABT + BAT =0), then T = B~ ' A is skew symmetric.

Proof. Since AB” is skew symmetric it can be written as
ABT = [a] for some a € R? =

A=[ayB 1T =BB a,B "
= B(B™'a]xB™")
B [BTa]y
7 det(B)

where the last equality follows from the following identity
which holds for B € R3*3

(Bx) x (By) = det(B)B~T(x x y).

Consequently, T = B~1A = % is skew symmetric.

O



Lemma 5. Let F' be an n-view fundamental matrix. If F
can be formulated as F = UVT + VUT where UV €
R3"%3 and in addition rank(F;) = 3fori =1,...,n then
it holds that either Yi rank(V;) = 3, rank(U;) = 2 or that
Vi rank(V;) = 2, rank(U;) = 3.

Proof. First, since Vi Fj; = 0, it follows that Vi U; VT is
skew-symmetric, implying that rank(U;V;T') = 2, and so
both 2 < rank(U;) < 3 and 2 < rank(V;) < 3, but both
cannot have full rank. Of the remaining possibilities.

1. 3i such that rank(U;) = rank(V;) = 2. According
to Lemma 3, 3t € R3, such that Ut = V1t = 0,
implying that £t = (VU +UV;T)t = 0. However,
this contradicts the full rank assumption over F;.

2. Suppose, without loss of generality, that
rank(Vh) = 3, rank(Uy) = 2
rank(Va) = 2, rank(Usz) = 3.
By Lemma 4, since U; V| is skew symmetric and
rank(V1) = 3,rank(Uy) = 2, we obtain that T} =

Vl_lUl is skew symmetric. By similar considerations
T, =Uy 1V2 is skew symmetric. This yields

Fio = U Vb + ViU
=WVTi(-To)U] + iUy
=WV (-T\T, + U]

Now, using the fact that rank(Vy) = rank(Us) = 3,
we obtain

rank(=T1Ty + I) = rank(Fi2) = 2. (1)

In the next steps we show a contradiction to (1). Since
rank(—T1Ty + I) = 2 then Iv € null(-T1 Tz + I),
v # 0 for which

(- +DHv=0=TTov=v
=t X (ta xv) =v.
We conclude that t7v = 0. Using the identity a x (b x
¢) = b(a’c) — c(a™'b), we obtain
t1 X (o xv)=v=>
to(t7v) — v(tity) = v =
—v(tity) =v =
(t7t2) = —1.
Now, the subspace defined by {u € R3|tTu = 0}
is of dimension 2. However, as we show below, it is

contained in null(—T1T> + I), contradicting (1), since
any vector u in this space satisfies

(7T1T2 + I)u =—t; X (tg X 11) +u
= —to(tTu) +u(tity) +u
=—-u+u=0.

Consequently, either Virank(V;) = 3, rank(U;) = 2 or
Virank(V;) = 2, rank(U;) = 3. O

For the next Lemma we note that in Lemma 5 and The-
orem | we use the following property, which we justify be-
low rank(F;) = 3 < rank(Fl) = 3 & null(FF) =
Do PR, t#£0,st. FIt =0 Pt cR3, t #£0,s.t.
VjFt =0.

Lemma 6. Let Vy,....V, € R3*3 and tq,...,t, € R3.
We define F;; = Vi[t; — tj]XVjT and assume that for
i # j rank(F;;) = 2. Then, {t;}!'_, are collinear if and
onlyif3i € {1,...,n} and 3e € R®,e # 0, 5.t. VjFj;e = 0.

Proof. = We first assume that {t;}}, are collinear. We
show it by construction. Let us choose 7 # 1 and define

e = ‘/Z-_l(ti — tl).

Since t; # t; (otherwise the rank assumption is violated)
then e # 0 and the collinear points tq,...,t, can be pa-
rameterized as follows

ty =t1 + Oék(ti - tl) Vk.
Now, VY it holds that

Fjie = Vj(t; —t:)x Vi" VT (6 — t1)
=Vj(t; —t;) x (t; —t1)
= V(o — ;) (t; — t1)) x (6; — 1)) = 0.
< Without loss of generality, we assume that ¢ # 1. There-
fore, Je € R3,e # 0 s.tVj Fje = 0. Since Fy; =
Vift: — ti]x VI = Vi_T(ti —t1) € null(Fy;). Assuming
that rank(Fy;) = 2 then the dimension of null(Fi;) is 1,

implying that e = V"7 (t; — t,), where o # 0 is a scalar.
Now, Vj

Fjie = 0= Vilt; =t VTV, T (ti —t1) =0
:>ij[tj—ti]><(ti—t1):0
i(t]—tl)X(tl—tl):O
= Jdoj; €R st t; —t; = a;(t; —t1)
=t; =t +o;(t; —t1)

concluding that the points are collinear. O
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