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Figure 8. Examples on the ShapeNet dataset in single-view train-
ing. Panels (a—¢) are the same as in Figure 4. This figure corre-
sponds to Section 4.1.1.

A. Appendix
A.1. Additional examples of single-view training

Figures 8 and 9 show some reconstruction examples of phone,
display, bench, sofa, and lamp categories on the ShapeNet dataset
using single-view training. These figures correspond to the de-
scription in Section 4.1.1. The difference among categories and
the use of texture prediction can be examined from these figures.
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Figure 9. Examples on the ShapeNet dataset in single-view train-
ing. Notation of (a—e) is the same as in Figure 4. This figure
corresponds to Section 4.1.1.

A.2. Performance of each category by multi-view
training

In Section 4.1.2, only the average performance in all categories
on the ShapeNet dataset has been reported. Table 7 shows recon-
struction accuracy of each category.

A.3. Additional examples of multi-view training

Figures 10 and 11 show results from our best performing mod-
els using multi-view training (/V,, = 20) for those interested in the
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Table 7. IoU of multi-view training on the ShapeNet dataset dataset.

learning. TP: texture prediction.

state-of-the-art performance on the ShapeNet dataset. As can be
seen in the figure, high-quality 3D models with textures can be re-
constructed without using 3D models for training. The mean IoU
of our method without texture prediction is 65.5, and the mean
IoU of our method with texture prediction is 65.0. In contrast to
single-view training, texture prediction does not improve the per-
formance in multi-view training for large NV,,.

A 4. Evaluation using CD and EMD

In addition to intersection over union (IoU), Chamfer distance
(CD) and earth mover’s distance (EMD) are also often used for
evaluation of 3D reconstruction. Table 8, 9, 10, 11, and 12 show
CD and EMD in the experiment of Table 2 in the paper. We com-
puted CD and EMD from points uniformly sampled from surfaces
and volumes.

CDs and EMD,, correlate well to IoUs, which also validates our
proposed method. EMD; seems strange because EMD is greatly
affected by spatial density of points and our method often gen-
erates spatially imbalanced surfaces. However, this imbalance
hardly affects visual quality because it is often made by folding
surfaces inside shapes. EMD,,, which is computed from spatially
uniform points, shows similar performance as other metrics.

A.5. Discriminators and optimization

Table 13 shows the performances of the discriminators in Ta-
ble 1 (c—d) in single-view training. The discriminator in Table 1
(d) does not work well in all cases. This table corresponds to the
description in Section 4.1.3.

A.6. Internal pressure in multi-view training

In Section 4.1.4, we validated the effect of the internal pressure
loss in single-view training. Table 14 shows that this loss is also
effective in multi-view training. This experiment was conducted
without texture prediction and view prior learning.

This table corresponds Section 4.1.2. VPL: proposed view prior

A.7. Loss functions of silhouettes

To compare two silhouette images, we used multi-scale cosine
distance in Eq. 3 and intersection over union (IoU) of silhouettes
in Eq. 4. Table 15 shows comparison of these loss functions in
multi-view training (N, = 2) on ShapeNet dataset. Additionally,
sum of squared error of two silhouette images is compared. This
result indicates that non-standard loss functions described in this
paper are not so effective.

A.8. Modification of neural mesh renderer

In our implementation, we compute the differentiation of a ren-
derer in a different way from [18]. Their method is not stable
when 47 in [18] is very small. Furthermore, the computation time
is significant because a very large number of pixels is involved in
computing the gradient with respect to one pixel. The approximate
differentiation described in this section solves both problems.

Suppose three pixels are aligned horizontally, as shown in
Figure 12 (a). Their coordinates are (z;—1,Yyi—1), (xs, i), and
(Zit1,yi+1), and their colors are p;—1, p;, and p;4+1, respec-
tively. Pixel ¢ is located on a polygon, and its three vertices
projected onto a 2D plane are (z1,y7), (z5,y5), and (z5,y3).
Then (x;, y; ) can be represented as their weighted sum (z;,y;) =
wi(x?, y7)+wa(z3,y3)+ws(zs, y3). Let £ be the loss function
of the network. When the gradient with respect to pixel (g—é, g ;7
is obtained, the gradient with respect to the vertices of the polygon
(gjf, gyz:f ) (gfg , aay% ) (gfg , aayiu) can be computed using w1,
w2, ws, and the chain rule.

We assume that when pixel ¢ moves to the right by Ax;, the
pixel colors change, as shown in Figure 12 (b). Concretely, the
color of pixel ¢ changes to p; + (pi—1 — p;)Az and the color of

pixel ¢ + 1 changes to p;+1 + (pi — pi+1)Az. Then, g?’ =

pi—1 — p; and % = p; — pi+1. Let g; be the gradient of the

loss function back-propagated to pixel ¢. Concretely, g; = g ;f .
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Table 9. Evaluation using CD. Points are uniformly sampled from volumes. This table corresponds to Table 2.
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Table 10. Evaluation using EMD. Points are uniformly sampled from surfaces. This table corresponds to Table 2.
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Table 11. Evaluation using EMD. Points are uniformly sampled from volumes. This table corresponds to Table 2.
Then, the gradient of x; is In the case where pixel ¢ moves to the left, we can compute the

oL 0L Op; oL Opit1
Oxi  Opi Ozi  Opiy1 Om;
= gi(pi—1 — pi) + git1(Pi — Pi+1)
_ (gz_;)right. (6)
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Figure 10. Examples of thirteen categories on the ShapeNet dataset Figure 11. Examples of thirteen categories on the ShapeNet dataset
by multi-view training (N, = 20) without texture prediction. Pan- by multi-view training (/V, = 20) with texture prediction. Panels
els (a—e) are the same as in Figure 4. (a—e) are the same as in Figure 4.
gradient in a similar manner. Thus, The problem is whether to use (g?)" or (¢”)"". When z;
. . : right __
oL AL dps oL Ops1 moves to the right, the decrease in £ is proportional to (d)"" =

5. = 3o 5a. T B0 S —(gf)“gh‘. When x; moves to the left, the decrease in L is pro-
Ti Pi O Pi-1 OTi portional to (d)'" = (g”)"". We define the gradient differently
= gi(pi — pit1) + gi-1(Pi-1 — pi) according to the following three cases.

left .
= (gi)" ) e When max((d)", (d)*") < 0, the loss increases by mov-
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Figure 12. Our assumptions on the differentiation of a renderer.

VL CC TP IoU CDs CD, EMD,; EMD,
403 6.74  5.59 21.8 1.45

v 490 581  3.93 23.5 0.76
v v 505 4.81 3.1 21.8 0.84
v 434 529 4.22 23.3 1.01

v v’ .508 383 275 24.9 0.72
v v v .513 3.78 2.65 24.3 0.70

Table 12. Comparison of IoU, CD and EMD. This table is sum-
mary of Table 2, §, 9, 10, and 11. Subscripts s and v mean that
points are uniformly sampled from surfaces and volumes respec-
tively. VPL: proposed view prior learning. CC: class conditioning
in the discriminator. TP: texture prediction. CD and EMD is lower

is better.

Discriminator Optimization Texture IoU
None - 403
Table 1 (c) Gradient reversal .505
Table 1 (c) Iterative 514
Table 1 (d) Gradient reversal 408*
Table 1 (d) Iterative 403"
None - v 434
Table 1 (c) Gradient reversal v 513
Table 1 (c) Iterative v .510
Table 1 (d) Gradient reversal v 484"
Table 1 (d) Iterative Ve 434

Table 13. Evaluation of the discriminators in Table 1 (c—d). *No

meaningful improvement was observed by tuning \q.

Supervision N, Internal pressure  IoU
Single-view 1 387
Single-view 1 v 1403
Multi-view 20 .648
Multi-view 20 v .652

Table 14. Effect of internal pressure loss.

ing the pixel ¢. Therefore, in this case, we define

e When 0 < max((d)™", (d)*") and (d)"*" < (d)"", the loss

oL _
oz, = 0-

Loss function IoU
Multi-scale cosine distance (Eq. 3, Ny = 5)  .575
Multi-scale cosine distance (Eq. 3, Ny = 1)  .567
Interesection over union (Eq. 4) .552
Sum of squared error .579

Table 15. Comparison of silhouette loss functions.

decreases more by moving pixel ¢ to the right. In this case,

oL __ P \right
we define 7= = (g7 )™".

e When 0 < max((d)"", (d)") and (d)"&" < (d)*, it is
better to move pixel ¢ to the left. In this case, we define

9 = ()

The gradient with respect to y; is defined in a similar way.

A.9. Experimental settings
A.9.1 Optimizer

We used the Adam optimizer [19] in all experiments. In our
ShapeNet experiments, the Adam parameters were set to o =
de — 4,61 = 0.5,82 = 0.999. In the PASCAL experiments,
the parameters were set to « = 2e — 5,1 = 0.5, 82 = 0.999.
The batch size is set to 64 in our ShapeNet experiments, and set to
16 in our PASCAL experiments.

A.9.2 Encoder, decoder and discriminator

We used the ResNet-18 architecture [ 1 0] for the encoders in all ex-
periments. The weights of the encoder were randomly initialized
in the ShapeNet experiments. The weights were initialized using
the weights of the pre-trained model from [10] in the PASCAL
experiments.

We generated a 3D shape and texture image by deforming a
pre-defined cube. The number of vertices on each face of the cube
is 16 x 16, and the vertices on the edge of the cube are shared
within two faces. The total number of vertices is 1352. The size
of a texture image on each face is 64 x 64 pixels. The shape
decoder outputs the coordinates of the vertices of this cube, and
the texture decoder outputs six texture images. Figures 13 and 14
show the architecture of the shape decoders used in the ShapeNet
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Figure 13. Architecture of the shape decoder used in the ShapeNet
experiments. The 16 X 16 vertices on each face of the cube are
separately generated, and they are merged into 1352 vertices. The
dimension of the input vector is 512. All linear and deconvolution
layers except the last one are followed by ReLU nonlinearity.
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Figure 14. Architecture of the shape decoder used in the PASCAL
experiments. The dimension of the input vector is 512. All linear
layers except the last one are followed by ReLU nonlinearity.

and PASCAL experiments. Figure 15 shows the architecture of the
texture decoder used in all experiments.

Figures 16 and 17 show the architectures of the discriminators
in the ShapeNet and PASCAL experiments.

The layers used in the architecture figures are as follows:

e linear(a) is an affine transformation layer. a is the number
of feature maps.

e conv(a,b,c) is a 2D convolution layer. The number of fea-
ture maps is a, the kernel size is b x b, and the stride size is
cxec.

e deconv(a, b, ) is a 2D deconvolution layer. The number of
feature maps is a, the kernel size is b X b, and the stride size
iscxec

e reshape(a) reshapes a vector into feature maps of size a X a.

e tile(a) tiles a vector into feature maps of size a X a.

hidden state h

¢ M

linear (512*4*4)

reshape (4)

deconv (256, 5, 2)
deconv (128, 5, 2) r X6

(for each face of a cube)
deconv (64, 5, 2)

<«

deconv (3, 5, 2)

texture image of
one face

—

Figure 15. Architecture of the texture decoder used in all exper-
iments. A texture image of size 64 x 64 is generated separately
for each face of a cube. The input vector has 512 dimensions. All
linear and deconvolution layers except the last one are followed by
Batch Normalization [12] and ReLU nonlinearity.

Image x viewpoint v

v v

conv (32, 5, 2) linear (32)

concat ]<—|
v

conv (64, 5, 2)

tile (112) |

conv (128, 5, 2)
conv (256, 5, 2)
conv (256, 5, 2)

conv (1,5, 2)

v

prediction map

Figure 16. The architecture of the discriminator used in the
ShapeNet experiments. The size of the input image is 224 x 224.
A viewpoint is represented by a three-dimensional vector of the
elevation, azimuth, and distance to the object. Spectral Normal-
ization [25] is applied to all convolution and linear layers. All
convolution layers except the last one are followed by LeakyReLLU
nonlinearity.

e concat(-) stacks two feature maps.

A.9.3 Other hyperparameters

Table 16 and Table 17 show the number of training iteration and
the weights of loss terms in ShapeNet and PASCAL experiments.



Training type N, Texture prediction  View prior learning  #training iteration A Ad Ap

single-view 1 50000 - - 0.0001
single-view 1 v 50000 0.5 - 0.0001
single-view 1 v 100000 - 0.2  0.0001
single-view 1 v v 100000 0.5 2 0.0001
multi-view 2,3,5,10,20 25000, - - 0.0001
multi-view 2,20 v 25000, 0.1 - 0.0001
multi-view 2,3,5,10,20 v 50000N, - 0.03  0.0001
multi-view 2,20 v v 50000, 0.1 0.3 0.0001

Table 16. Hyperparameters used in the ShapeNet experiments.

Training type Texture prediction  View prior learning  #training iteration A Ad Ap
category-agnostic 15000 - - 0.00003
category-agnostic v 15000 0.01 - 0.00003
category-agnostic v 50000 - 2 0.00003
category-agnostic v v 250000 0.01 0.5 0.00003
category-specific 5000 - - 0.00003
category-specific v 5000 0.01 - 0.00003
category-specific v 40000 - 2 0.00003
category-specific v v 80000 0.01 0.5 0.00003

Table 17. Hyperparameters used in the PASCAL experiments.

Image x viewpoint v

conv (64, 4, 2) linear (64)
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[ concat ](—[ tile (113) I
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conv (512, 4, 1)
conv (1,4, 1)

prediction map

Figure 17. Architecture of the discriminator used in the PASCAL
experiments. The size of the input image is 224 x 224. A view-
point is represented by a 3 X 3 rotation matrix. All convolution
layers except the last one are followed by LeakyReLU nonlinear-

1ty.



