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1. Appendix
1.1. Universality of Our Framework for Object De-

tection Networks

While most existing object detectors are structured by
single-staged or two-staged architecture, we have been ver-
ified our framework only on standard two-staged architec-
ture. To validate the universality of our framework for
object detection network, we additionally evaluated our
method on a single-staged architecture. Since SSD [6] is
one of the standard networks in single-staged object de-
tectors, we conducted the experiments on SSD. We con-
ducted the experiments for the Real-world→Artistic Media
Datasets (AMDs) [5] as study cases.

The comparison results are reported in Table 1, 2, and
3. Similar to the results on Faster R-CNN [7], our methods
achieved a significant gain of approximately 7 % ∼ 17%
compared to the SSD baseline. Furthermore, our method
also outperformed other domain adaptation methods regard-
less of the difference in the object detector. These results
prove the universal property of our framework. For Real-
world→ Clipart1k case, unlike the Faster R-CNN baseline,
our method showed comparable but not the highest class-
wise performance for some classes in the animal category.
Especially for the sheep class, our method had lower AP
than the baseline. However, since these classes showed
further lower performance on the Faster R-CNN backbone,
these comparable performances can be seen as an advantage
of the SSD architecture.

1.2. Performance Comparison with Fully Super-
vised Models

To check the potential of our method, we compared with
the fully supervised models on various adaptation cases.
The fully supervised models are implemented by fine-
tuning the Faster R-CNN [7] baseline with the train set in
the target domain. The model was fine-tuned for one epoch
for the Real-world→Artistic Media Datasets (AMDs) cases
and 30k iterations for the urban scene adaptation case.

As shown in Table 4, our method achieved compara-

ble or higher performance compared to the fully supervised
models. Especially for the Real-world→Watercolor2k [5],
These results can be interpreted as that even though the fea-
ture extractor of the models is enriched by abundant source
domain data, supervision by insufficient annotations or su-
pervision without domain adaptation methods cannot en-
courage the model enough to infer discriminatively in the
target domain distribution. However, our method suffi-
ciently exploited the rich source domain data and achieved
impressive performance without annotations of the target
domain, which verifies the potential of our method.

1.3. Universality of Domain Diversification for Ar-
chitectures of the Domain Shifters

To verify the universality of Domain Diversification
(DD) for the domain shift architecture, we conducted ad-
ditional experiments on the domain shifter from Cartoon-
GAN [1]. Unlike the configurations of the constraint fac-
tors in the manuscript, we trained the domain shifters with
no constraint, color preservation constraint, and reconstruc-
tion constraint factor each. We present qualitative results of
the shifted domains in Sec 1.4.

Table 5 shows the result of the ablation study on numbers
of shifted domains. Similar to the results on the manuscript,
the overall results of each method were improved as the
number of shifted domains increases. The performance gain
by MRL also amplified as the number of shifted domains
increases. However, DD with two domains does not sig-
nificantly improve compared to each result with the single
domain. It seems like the shifted domain with no constraint
and with color preservation constraint does not diversified
enough so that the efficacy of DD and MRL were degraded
than expected. However, the DD with three domains sig-
nificantly enhances the performance compare to the results
with two domains. These results validate the effectiveness
of the DD and MRL on newly generated three domains.
Thus, we show the universality of the DD for domain shifter
architecture.
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
Baseline [5] 19.8 49.5 20.1 23.0 11.3 38.6 34.2 2.5 39.1 21.6 27.3 10.8 32.5 54.1 45.3 31.2 19.0 19.5 19.1 17.9 26.8
DT [5] 23.3 60.1 24.9 41.5 26.4 53.0 44.0 4.1 45.3 51.5 39.5 11.6 40.4 62.2 61.1 37.1 20.9 39.6 38.4 36.0 38.0
Ours (n=3) 39.5 64.7 29.8 35.6 25.7 56.3 49.7 3.9 53.3 57.6 35.4 35.8 38.3 70.3 64.6 42.7 17.1 45.9 52.9 66.5 44.3

Table 1. Quantitative results for object detection of Clipart1k [5] by adapting from PASCAL VOC [4] on SSD [6].

Method bike bird car cat dog person mAP
Baseline [5] 79.8 49.5 38.1 35.1 30.4 65.1 49.6
DT [5] 82.8 47.0 40.2 34.6 35.3 62.5 50.4
Ours (n=3) 86.3 51.8 45.1 42.6 42.4 70.7 56.5

Table 2. Quantitative results for object detection of Watercolor2k
[5] by adapting from PASCAL VOC [4] on SSD [6].

Method bike bird car cat dog person mAP
Baseline [5] 43.9 10.0 19.4 12.9 20.3 42.6 24.9
DT [5] 43.6 13.6 30.2 16.0 26.9 48.3 29.8
Ours (n=3) 51.9 21.8 39.7 26.6 37.1 61.3 41.2

Table 3. Quantitative results for object detection of Comic2k [5]
by adapting from PASCAL VOC [4] on SSD [6].

1.4. Additional Qualitative Comparisons

Figure 1, 2, and 3 show additional qualitative results
for the object detection of Clipart1k, Watercolor2k, and
Comic2k [5] by adapting from PASCAL VOC [4], respec-
tively. Figure 4, 5, 6, and 7 show additional shifted results
in the shifted domains with various configurations of con-
straint factors (i.e., color preservation, reconstruction, both
of them, or none of them). Specifically, Fig. 4 shows shifted
images generated for Real-world→Clipart1k [5] through
the domain shifter architecture of CartoonGAN [1].
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(a) Input image (b) Baseline (c) DAF (Img) [2] (d) DT [5] (e) Ours (DD) (f) Ours (DD+MRL) (g) Ground-truth

Figure 1. Qualitative results for object detection of Clipart1k [5] by adapting from PASCAL VOC [4].
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(a) Input image (b) Baseline (c) DAF (Img) [2] (d) DT [5] (e) Ours (DD) (f) Ours (DD+MRL) (g) Ground-truth

Figure 2. Qualitative results for object detection of Watercolor2k [5] by adapting from PASCAL VOC [4].
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(a) Input image (b) Baseline (c) DAF (Img) [2] (d) DT [5] (e) Ours (DD) (f) Ours (DD+MRL) (g) Ground-truth

Figure 3. Qualitative results for object detection of Comic2k [5] by adapting from PASCAL VOC [4].
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Figure 4. Shifted samples in the shifted domains of the Clipart1k [5] by adapting from PASCAL VOC [4]. The domain shifter architecture
is from CartoonGAN [1].

Figure 5. Shifted samples in the shifted domains of Clipart1k [5] by adapting from PASCAL VOC [4].
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Figure 6. Shifted samples in the shifted domains of Watercolor2k [5] by adapting from PASCAL VOC [4].

Figure 7. Shifted samples in the shifted domains of Comic2k [5] by adapting from PASCAL VOC [4].
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