
Revisiting Self-Supervised Visual Representation Learning:
Supplementary Material

Alexander Kolesnikov*, Xiaohua Zhai*, Lucas Beyer*

Google Brain
Zürich, Switzerland

{akolesnikov,xzhai,lbeyer}@google.com

1. Self-supervised model details

For training all self-supervised models we use stochastic
gradient descent (SGD) with momentum. The initial learn-
ing rate is set to 0.1 and the momentum coefficient is set
to 0.9. We train for 35 epochs in total and decay the learn-
ing rate by a factor of 10 after 15 and 25 epochs. As we
use large mini-batch sizes B during training, we leverage
two recommendations from [2]: (1) a learning rate scaling,
where the learning rate is multiplied by B

256 and (2) a linear
learning rate warm-up during the initial 5 epochs.

In the following we give additional details that are spe-
cific to the choice of self-supervised learning technique.

Rotation: During training we use the data augmentation
mechanism from [9]. We use mini-batches of B = 1024
images, where each image is repeated 4 times: once for ev-
ery rotation. The model is trained on 128 TPU [5] cores.

Exemplar: In order to generate image examples, we use
the data augmentation mechanism from [9]. During train-
ing, we use mini-batches of size B = 512, and for each
image in a mini-batch we randomly generate 8 examples.
We use an implementation1 of the triplet loss [8] from the
tensorflow package [1]. The margin parameter of the
triplet loss is set to 0.5. We use 32 TPU cores for training.

Jigsaw: Similar to [7], we preprocess the input images
by: (1) resizing the input image to 292 × 292 and ran-
domly cropping it to 255×255; (2) converting the image to
grayscale with probability 2⁄3 by averaging the color chan-
nels; (3) splitting the image into a 3×3 regular grid of cells
(size 85 × 85 each) and randomly cropping 64 × 64-sized
patches inside every cell; (4) standardize every patch indi-
vidually such that its pixel intensities have zero mean and
unit variance. We use SGD with batch size B = 1024. For
each image individually, we randomly select 16 out of the

*equal contribution
1https://www.tensorflow.org/api_docs/python/tf/

contrib/losses/metric_learning/triplet_semihard_
loss

100 pre-defined permutations and apply all of them. The
model is trained on 32 TPU cores.

Relative Patch Location: We use the same patch prepos-
sessing, representation extraction and training setup as in
the Jigsaw model. The only difference is the loss function
as discussed in the main text.

2. Downstream training details

Training linear models with SGD: For training linear
models with SGD, we use a standard data augmentation
technique in the Rotation and Exemplar cases: (1) resize
the image, preserving its aspect ratio such that its smallest
side is 256. (2) apply a random crop of size 224 × 224.
For the patch-based methods, we extract representations by
averaging the representations of all nine, colorful, standard-
ized patches of an image. At final evaluation-time, fixed
patches are obtained by scaling the image to 255 × 255,
cropping the central 192 × 192 patch and taking the 3 × 3
grid of 64× 64-sized patches from it.

We use a batch-size of 2048 for evaluation of represen-
tations from Rotation and Exemplar models and of 1024
for Jigsaw and Relative Patch Location models. As we use
large mini-batch sizes, we perform learning-rate scaling, as
suggested in [2].

Training linear models with L-BFGS: We use a publicly
available implementation of the L-BFGS algorithm [6] from
the scipy [4] package with the default parameters and set the
maximum number of updates to 800. For training all our
models we apply l2 penalty λ||W ||22, where W ∈ RM×C is
the matrix of model parameters, M is the size of the repre-
sentation, andC is the number of classes. We set λ = 100.0

MC .

Training MLP models with SGD: In the MLP evalua-
tion scenario, we use a single hidden layer with 1000 chan-
nels. At training time, we apply dropout [3] to the hid-
den layer with a drop rate of 50%. The l2 regularization
scheme is the same as in the L-BFGS setting. We optimize
the MLP model using stochastic gradient descent with mo-

1

https://www.tensorflow.org/api_docs/python/tf/contrib/losses/metric_learning/triplet_semihard_loss
https://www.tensorflow.org/api_docs/python/tf/contrib/losses/metric_learning/triplet_semihard_loss
https://www.tensorflow.org/api_docs/python/tf/contrib/losses/metric_learning/triplet_semihard_loss

0

10

20

30

40

50

60 Rotation

Decay at 30
Decay at 120
Decay at 480

0

10

20

30

40

50

60Exemplar

Decay at 30
Decay at 120
Decay at 480

0 100 200 300 400 500
0

10

20

30

40

50

60 Relative Patch Location

Decay at 30
Decay at 120
Decay at 480

0 100 200 300 400 500
0

10

20

30

40

50

60Jigsaw

Decay at 30
Decay at 120
Decay at 480

Epochs of Evaluation

Do
wn

str
ea

m
 Im

ag
eN

et
Ac

cu
ra

cy
 [%

]

Figure 1. Downstream task accuracy curve of the linear evaluation model trained with SGD on representations learned by the four
self-supervision pretext tasks.

Table 1. Skip-connections ablation study for Rotation and Exem-
plar techniques. We measure quality of representations learned in
different layers by computing accuracy of a linear classifier trained
on the corresponding activations and evaluated on the ILSVRC-
2012 dataset.

Block1 Block2 Block3 Block4 PreLogits

R
ot

at
io

n No Skip 26.0 33.3 38.6 39.6 37.9
Skip 26.0 36.0 41.2 41.5 44.1
Diff. +0.0 +2.7 +2.6 +1.9 +6.2

E
xe

m
pl

ar No Skip 14.4 21.5 26.9 30.7 31.4
Skip 14.9 22.0 28.3 32.8 35.3
Diff. +0.5 +0.5 +1.4 +2.1 +3.9

mentum (the momentum coefficient is 0.9) for 180 epochs.
The batch size is 512, initial learning rate is 0.01 and we
decay it twice by a factor of 10: after 60 and 120 epochs.

3. Skip-connections ablation study
In the paper we hypothesize that skip-connections help

to prevent deterioration of representations learned by self-
supervised models. In order to confirm this hypothesis we
train the ResNet model with and without skip-connections.

Specifically, we use the Rotation and Exemplar techniques
for learning representations to train ResNet18 network
from [14] and a modified version of it, where we remove
the skip-connections. Both networks achieve similar per-
formance in the fully-supervised setting (69.6% and 68.8%
top-1 accuracy), but the one with skip-connections results
in significantly better representations (as measured by our
main metric), see Table 1.

4. Training linear models with SGD
In Figure 1 we demonstrate how accuracy on the valida-

tion data progresses during the course of SGD optimization.
We observe that in all cases achieving top accuracy requires
training for a very large number of epochs.

5. More Results on Places205 and ImageNet
For completeness, we present full result tables for var-

ious settings considered in the main paper. These in-
clude numbers for ImageNet evaluated on 10% of the data
(Table 2) as well as all results when evaluating on the
Places205 dataset (Table 3) and a random subset of 5% of
the Places205 dataset (Table 4).

Table 2. Evaluation on ImageNet with 10% of the data.

Model
Rotation Exemplar RelPatchLoc Jigsaw

4× 8× 12× 16× 4× 8× 12× 4× 8× 4× 8×

RevNet50 31.3 34.6 37.9 38.4 27.1 30.0 31.1 24.6 27.8 25.0 24.2
ResNet50 v2 28.2 31.7 32.2 33.3 28.3 30.1 31.2 25.8 29.4 23.3 24.1
ResNet50 v1 26.8 27.2 27.4 27.8 28.7 30.8 31.7 30.2 33.2 26.4 28.3

RevNet50 (-) 30.2 32.3 33.3 33.4 25.7 26.3 26.4 21.6 25.0 24.1 24.9
ResNet50 v2 (-) 28.4 28.6 28.2 28.5 26.5 27.3 27.3 26.1 26.3 23.9 23.1

VGG19-BN 8.8 6.7 7.6 13.1 16.6 17.7 18.2 15.8 16.8 10.6 10.7

Table 3. Evaluation on Places205 with 100% of the data.

Model
Rotation Exemplar RelPatchLoc Jigsaw

4× 8× 12× 16× 4× 8× 12× 4× 8× 4× 8×

RevNet50 41.8 45.3 47.4 47.9 39.4 43.1 44.5 37.5 41.9 37.1 40.7
ResNet50 v2 39.8 43.2 44.2 44.8 39.5 42.8 44.3 38.7 43.2 36.3 39.2
ResNet50 v1 38.1 40.0 41.3 42.0 39.3 43.1 44.5 42.3 46.2 39.4 42.9

RevNet50 (-) 39.5 44.3 46.3 47.5 35.8 39.3 40.7 32.5 39.7 34.5 38.5
ResNet50 v2 (-) 35.5 39.5 41.8 42.8 32.6 34.9 36.0 35.8 39.1 31.6 33.2

VGG19-BN 22.6 21.6 23.8 30.7 29.3 32.0 33.3 31.5 33.6 24.6 27.2

Table 4. Evaluation on Places205 with 5% of the data.

Model
Rotation Exemplar RelPatchLoc Jigsaw

4× 8× 12× 16× 4× 8× 12× 4× 8× 4× 8×

RevNet50 32.1 33.4 34.5 34.8 30.7 31.2 31.6 28.9 29.7 29.3 29.3
ResNet50 v2 30.6 31.8 31.8 32.0 32.1 31.8 32.2 29.8 31.1 29.4 28.9
ResNet50 v1 30.0 29.2 29.0 29.2 32.5 32.5 32.7 33.2 33.9 31.2 31.3

RevNet50 (-) 33.5 34.4 34.5 34.3 31.0 32.2 32.2 27.4 30.8 29.8 31.1
ResNet50 v2 (-) 31.6 33.2 33.6 33.6 30.0 31.4 31.9 30.9 31.9 28.4 28.9

VGG19-BN 16.8 13.9 15.3 20.2 23.5 23.4 23.7 23.8 24.0 19.3 18.7

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensor-
flow: a system for large-scale machine learning. 1

[2] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He. Accurate, large
minibatch sgd: training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 1

[3] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. Improving neural networks by pre-
venting co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012. 1

[4] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source
scientific tools for Python, 2001. 1

[5] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, et al. In-
datacenter performance analysis of a tensor processing unit. In
International Symposium on Computer Architecture (ISCA).
IEEE, 2017. 1

[6] D. C. Liu and J. Nocedal. On the limited memory bfgs method
for large scale optimization. Mathematical programming,
45(1-3):503–528, 1989. 1

[7] M. Noroozi and P. Favaro. Unsupervised learning of visual
representations by solving jigsaw puzzles. In European Con-
ference on Computer Vision (ECCV), 2016. 1

[8] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. In Com-
puter Vision and Pattern Recognition (CVPR), 2015. 1

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2015. 1

