
Supplementary Material:
A-CNN: Annularly Convolutional Neural Networks on Point Clouds

1. Ball Query vs Ring-based Scheme
The comparison of multi-scale method proposed in [12]

and our ring-based scheme is depicted in Fig. 1. It is noted
that comparing to multi-scale regions, the ring-based struc-
ture does not have overlaps (no neighboring point duplica-
tion) at the query point’s neighborhood. It means that each
ring contains its own unique points.
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Figure 1: A schematic comparison for searching neighbors in a lo-
cal region with Nq points between multi-scale approach from [12]
and our proposed approaches with regular and dilated rings. The
number of neighboring points per region (e.g., k1 and k2) is the
same between different methods. Regions in multi-scale archi-
tecture have neighboring overlaps (red points belong to different
regions near the same query point q), while regular and dilated
rings have the unique neighbors.

Table 1: Experiments on redundancy on ModelNet40 dataset.
AAC is accuracy average class, OA is overall accuracy.

AAC OA
PointNet++ (multi-scale / with overlap) 86.5 90.2
PointNet++ (multi-ring / without overlap) 87.3 90.6
A-CNN (with all components) 90.3 92.6

We have discovered that reducing redundancy can im-
prove the existing multi-scale approach in [12]. We test
redundancy issue on original PointNet++ model [12] with
and without overlap / redundancy. We compare the orig-
inal PointNet++ multi-scale model with ball queries (with
redundant points) against PointNet++ with our proposed
regular rings (without redundant points). Our experiments
show that the proposed multi-ring (i.e., without redundant
points) outperforms the multi-scale scheme (i.e., with re-
dundant points) on ModelNet40 according to Tab. 1.

2. Training Details
We use A-CNN-3L network configuration in Tab. 2 for all

experiments on point cloud classification tasks and A-CNN-
4L network configuration in Tab. 2 for both part segmenta-
tion and semantic segmentation tasks. We use regular rings
in L1 and dilated rings in L2 in our A-CNN-3L architecture.

Similarly, we use regular rings in L1 and dilated rings in L2

and L3 in our A-CNN-4L architecture.
We use Adam optimization method with learning rate

0.001 and decay rate 0.7 in classification and decay 0.5
in segmentation tasks. We have trained our classification
model for 250 epochs, our part segmentation model for 200
epochs, and our large-scale semantic segmentation models
for 50 epochs on each area of S3DIS and for 200 epochs on
ScanNet. The training time of our model is faster than that
of PointNet++ model, since we use ring-based neighboring
search, which is more efficient and effective than ball query
in PointNet++ model. For instance, the training time on the
segmentation model for 200 epochs is about 19 hours on a
single NVIDIA Titan Xp GPU with 12 GB GDDR5X, and
PointNet++ model needs about 32 hours for the same task.
The size of our trained model is 22.3 MB and the size of
PointNet++ model is 22.1 MB.

3. Feature Visualization

Local Feature Visualization. Fig. 2 and Fig. 3 visualize
the magnitude of the gradient per point in the classification
task on ModelNet10 and ModelNet40 datasets. Blue color
represents low magnitude of the gradients and red color rep-
resents high magnitude of the gradients. The points with
higher magnitudes get greater updates during training and
the learning contribution of them is higher. Therefore, this
feature visualization could be thought as the object saliency.
For example, in ModelNet40 dataset our model considers
wings and tails as important regions to classify an object as
an airplane; bottle neck is important for a bottle; the flow-
ers and leaves are important for a plant; tube or middle part
(usually narrow parts) is important for a lamp; legs are im-
portant to classify an object as a stool.

Global Feature Visualization. Fig. 4 and Fig. 5 shows
the t-SNE clustering visualization [10] of the learned global
shape features from the proposed A-CNN model for the
shape classification tasks in ModelNet10 and ModelNet40
test splits. We reduce 1024-dim feature vectors to 2-dim
features. We can see that similar shapes are well clustered
together according to their semantic categories. For ex-
ample, in ModelNet10 dataset the clusters of desk, dresser,
night stand, and table classes are closer and even intersect
with each other, because the objects from these classes look
similar. The perplexity parameters for ModelNet10 and
ModelNet40 datasets are set as 15 and 50, respectively, to
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Table 2: Network configurations.

L1 L2 L3 L4

A-CNN-3L
(classification)

C 512 128 1 -
rings [[0.0, 0.1], [0.1, 0.2]] [[0.1, 0.2], [0.3, 0.4]] - -
k [16, 48] [16, 48] 128 -
F [[32,32,64], [64,64,128]] [[64,64,128], [128,128,256]] [256,512,1024] -

A-CNN-4L
(segmentation)

C 512 128 32 1
rings [[0.0, 0.1], [0.1, 0.2]] [[0.1, 0.2], [0.3, 0.4]] [[0.2, 0.4], [0.6, 0.8]] -
k [16, 48] [16, 48] [16, 48] 32
F [[32,32,64], [64,64,128]] [[64,64,128], [128,128,256]] [[128,128,256], [256,256,512]] [512,768,1024]

Note: Both of the models represent encoder part. A-CNN-3L model consists of three layers. A-CNN-4L model consists of four layers. For each layer,
C is the number of centroids, rings is the inner and outer radiuses of a ring: [Rinner, Router], k is number of neighbors, F is feature map size. For
example, our A-CNN-4L model at the first layer L1 has 512 centroids; two regular rings where first ring constrained by radiuses of 0.0 and 0.1 and the
second ring has radiuses of 0.1 and 0.2; k-NN search returns 16 points in the first ring, and 48 points in the second ring; the feature map size in the first
ring is equal to [32, 32, 64] and in the second ring is [64, 64, 128]. Convolutional kernel size across different rings and layers is the same and equal to
1 × 3. Also, we have to double the number of centroids in each layer in model A-CNN-4L on ScanNet as the number of points in each block is twice
more than that in S3DIS.

Low High

To
ile
t 

M
on
ito
r 

C
ha
ir

So
fa

Figure 2: The magnitude of the gradient per point in the classifi-
cation task on ModelNet10 dataset.

reduce spare space between clusters.

4. Data Preparation Details
S3DIS data preparation. To prepare training and test-

ing datasets, we divide every room into blocks with a size
of 1 m × 1 m × 2 m and with a stride of 0.5 m. We has
sampled 4096 points from each block. The height of each
block is scaled to 2 m to ensure that our constraint-based k-
NN search works optimally with the provided radiuses. In
total, the prepared dataset contains 23,585 blocks across all
six areas. Each point is represented as a 6D vector (XY Z:
normalized global point coordinates and centered at origin,
RGB: colors). We do not use the relative position of the
block in the room scaled between 0 and 1 as used in [11],
because our model already achieves better results without
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Figure 3: The magnitude of the gradient per point in the classifi-
cation task on ModelNet40 dataset.

using this additional information. We calculate point nor-
mals for each room by using the Point Cloud Library (PCL)
library [13]. The calculated normals are only used to order
points in the local region. For data augmentation, we use the
same data augmentation strategy as used in the point cloud
segmentation on ShapeNet-part dataset which is point per-
turbation with point shuffling.

ScanNet data preparation. ScanNet divides original
1513 scanned scenes in 1201 and 312 for training and test-
ing, respectively. We sample blocks from the scenes fol-
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Table 3: Segmentation results on ShapeNet-part dataset (input is XYZ only). Per-category and mean IoUs (%) are reported.

mean areo bag cap car chair ear
phone

guitar knife lamp laptop motor mug pistol rocket skate
board

table

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
PointNet [11] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
Kd-Net [4] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
KCNet [14] 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3
PCNN [1] 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
PointGrid [6] 86.4 85.7 82.5 81.8 77.9 92.1 82.4 92.7 85.8 84.2 95.3 65.2 93.4 81.7 56.9 73.5 84.6
PointCNN [8] 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.2 84.2 64.2 80.0 83.0
A-CNN (our) 85.9 83.9 86.7 83.5 79.5 91.3 77.0 91.5 86.0 85.0 95.5 72.6 94.9 83.8 57.8 76.6 83.0

Table 4: Segmentation results on ShapeNet-part dataset (input is XYZ + normals). Per-category and mean IoUs (%) are reported.

mean areo bag cap car chair ear
phone

guitar knife lamp laptop motor mug pistol rocket skate
board

table

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
PointNet++ [12] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SyncSpecCNN [19] 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1
SO-Net [7] 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0
SGPN [17] 85.8 80.4 78.6 78.8 71.5 88.6 78.0 90.9 83.0 78.8 95.8 77.8 93.8 87.4 60.1 92.3 89.4
RSNet [3] 84.9 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2
O-CNN (+ CRF) [16] 85.9 85.5 87.1 84.7 77.0 91.1 85.1 91.9 87.4 83.3 95.4 56.9 96.2 81.6 53.5 74.1 84.4
Point2Sequence [9] 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7 70.8 94.6 79.3 58.1 75.2 82.8
A-CNN (our) 86.1 84.2 84.0 88.0 79.6 91.3 75.2 91.6 87.1 85.5 95.4 75.3 94.9 82.5 67.8 77.5 83.3

Note: “CRF” stands for conditional random field method for final result refinement in O-CNN method.

Figure 4: The t-SNE clustering visualization of the learned global
shape features from the proposed A-CNN model for the shapes in
ModelNet10 test split.

lowing the same procedure as in [12], where every block
has a size of 1.5 m × 1.5 m with 8192 points. We esti-
mate point normals using the PCL library [13]. Each point
is represented as a 6D vector (XY Z: coordinates of the
block centered at origin, NxNyNz: normals) without RGB
information. For data augmentation, we use the point per-
turbation with point shuffling.

5. More Experimental Results

Point Cloud Segmentation. Tab. 3 and Tab. 4 show the
quantitative results of part segmentation on ShapeNet-part
dataset with two different inputs. Tab. 3 reports results when
the input is point position only. Tab. 4 reports results when

Figure 5: The t-SNE clustering visualization of the learned global
shape features from the proposed A-CNN model for the shapes in
ModelNet40 test split.

the input is point position with its normals.
For ShapeNet-part dataset, we visualize more results

(besides the segmentation results shown in the paper) in
Fig. 6. We compare our results with PointNet++ [12], and
our A-CNN model can produce better segmentation results
than PointNet++ model.

Semantic Segmentation in Scenes. For S3DIS dataset,
we pick rooms from all six areas: area 1 (row 1), area 2 (row
2), area 3 (row 3), area 4 (row 4), area 5 (row 5), and area 6
(row 6); and compare them with PointNet [11] results and
ground truth. The results are shown in Fig. 7. The detailed
quantitative evaluation results for each shape class are re-
ported in Tab. 5. Our model demonstrates good semantic
segmentation results and achieves the state-of-the-art per-
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Table 5: Segmentation results on S3DIS dataset. “acc” is overall accuracy and “mean” is average IoU over 13 classes.

acc mean ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [11] 78.5 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
MS+CU (2) [2] 79.2 47.8 88.6 95.8 67.3 36.9 24.9 48.6 52.3 51.9 45.1 10.6 36.8 24.7 37.5
G+RCU [2] 81.1 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 58.1 47.4 6.9 39.0 30.0 41.9
RSNet [3] - 56.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 59.7 60.1 16.4 50.2 44.9 52.0
3P-RNN [18] 86.9 56.3 92.9 93.8 73.1 42.5 25.9 47.6 59.2 60.4 66.7 24.8 57.0 36.7 51.6
SPGraph [5] 85.5 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
PointCNN [8] 88.1 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
A-CNN (our) 87.3 62.9 92.4 96.4 79.2 59.5 34.2 56.3 65.0 66.5 78.0 28.5 56.9 48.0 56.8

formance on segmenting walls and chairs. Meanwhile,
our model performs slightly worse than PointCNN [8] on
other categories due to their non-overlapping block sam-
pling strategy with paddings which we do not use. Sup-
plementary Video is included for dynamically visualizing
each area in detail.

For ScanNet dataset, we pick six challenging scenes and
visualize the results of our A-CNN model, PointNet++ [12],
and ground truth side by side. The visualization results
are provided in Fig. 8. Our approach outperforms Point-
Net++ [12] and other baseline methods, such as Point-
Net [11], TangentConv [15], and PointCNN [8] according
to Tab. 2 in the main paper.

References

[1] M. Atzmon, H. Maron, and Y. Lipman. Point convolutional
neural networks by extension operators. ACM Transactions
on Graphics, 37(4):71:1–71:12, 2018.

[2] F. Engelmann, T. Kontogianni, A. Hermans, and B. Leibe.
Exploring spatial context for 3D semantic segmentation of
point clouds. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 716–724,
2017.

[3] Q. Huang, W. Wang, and U. Neumann. Recurrent slice net-
works for 3D segmentation of point clouds. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2626–2635, 2018.

[4] R. Klokov and V. Lempitsky. Escape from cells: Deep Kd-
networks for the recognition of 3D point cloud models. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 863–872, 2017.

[5] L. Landrieu and M. Simonovsky. Large-scale point cloud
semantic segmentation with superpoint graphs. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4558–4567, 2018.

[6] T. Le and Y. Duan. PointGrid: A deep network for 3D
shape understanding. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9204–
9214, 2018.

[7] J. Li, B. M. Chen, and G. H. Lee. SO-Net: Self-organizing
network for point cloud analysis. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 9397–9406, 2018.

[8] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. PointCNN:
Convolution on X-transformed points. In Advances in Neural
Information Processing Systems, pages 828–838, 2018.

[9] X. Liu, Z. Han, Y.-S. Liu, and M. Zwicker. Point2Sequence:
Learning the shape representation of 3D point clouds with an
attention-based sequence to sequence network. In Associa-
tion for the Advancement of Artificial Intelligence, 2019.

[10] L. Maaten and G. Hinton. Visualizing data using t-SNE.
Journal of Machine Learning Research, 9(Nov):2579–2605,
2008.

[11] C. Qi, H. Su, K. Mo, and L. Guibas. PointNet: Deep learning
on point sets for 3D classification and segmentation. Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 652–660, 2017.

[12] C. Qi, L. Yi, H. Su, and L. Guibas. PointNet++: Deep hier-
archical feature learning on point sets in a metric space. In
Advances in Neural Information Processing Systems, pages
5105–5114, 2017.

[13] R. Rusu and S. Cousins. 3D is here: Point cloud library
(PCL). In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 1–4, 2011.

[14] Y. Shen, C. Feng, Y. Yang, and D. Tian. Mining point cloud
local structures by kernel correlation and graph pooling. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4548–4557, 2018.

[15] M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou. Tan-
gent convolutions for dense prediction in 3D. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3887–3896, 2018.

[16] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong. O-
CNN: Octree-based convolutional neural networks for 3D
shape analysis. ACM Transactions on Graphics, 36(4):72,
2017.

[17] W. Wang, R. Yu, Q. Huang, and U. Neumann. SGPN:
Similarity group proposal network for 3D point cloud in-
stance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2569–
2578, 2018.

[18] X. Ye, J. Li, H. Huang, L. Du, and X. Zhang. 3D recurrent
neural networks with context fusion for point cloud semantic
segmentation. In Proceedings of The European Conference
on Computer Vision, September 2018.

[19] L. Yi, H. Su, X. Guo, and L. Guibas. SyncSpecCNN: Syn-
chronized spectral CNN for 3D shape segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6584–6592, 2017.

4



C
ar

C
ha
ir

G
ui
ta
r

La
m
p

La
pt
op

M
ug

M
ot
or
bi
ke

C
ap

(a) PointNet++ [12] (b) PointNet++ (diff) (c) Our (d) Our (diff) (e) Ground Truth

Figure 6: More segmentation results on ShapeNet-part dataset. Second and fourth columns show the differences between ground truth and
prediction (red points are mislabeled points) of PointNet++ and our method.
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Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

(a) Input (b) PointNet [11] (c) Our (d) Ground Truth

Figure 7: The visualization results on S3DIS dataset. We compare our model with PointNet [11] and the ground truth. The challenging
sample rooms have been picked from the all six areas: area 1 (row 1), area 2 (row 2) area 3 (row 3), area 4 (row 4), area 5 (row 5), and area
6 (row 6).
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ChairFloor Wall Table Toilet Sink Sofa Bookshelf Desk Bed Bathtub Curtain

DoorCounter Window Shower Curtain Refrigirator Picture Cabinet Other Furniture Unannotated

(a) Input (b) PointNet++ [12] (c) Our (d) Ground Truth

Figure 8: The visualization results on ScanNet dataset. We compare our model with PointNet++ [12] and the ground truth. The challenging
sample rooms have been picked from the ScanNet dataset.
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