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A. Supplementary experimental procedures

A.1. Statistical methods

A.1.1 Comparison of two models on the same dataset

To test for superiority of one model over another on a given dataset, we constructed permutations where, for each example,

we randomly exchanged the predictions of the two networks. For each permutation, we computed the difference in accuracy

between the two networks. (For VOC2007, we considered the accuracy of predictions across labels.) We computed a p-value

as the proportion of permutations where the difference is at least as extreme as the observed difference in accuracy. For top-1

accuracy, this procedure is equivalent to a binomial test sometimes called the "exact McNemar test," and a p-value can be

computed exactly. For mean per-class accuracy, we approximated a p-value based on 10,000 permutations. These tests assess

whether one trained model performs better than another on data drawn from the test set distribution. However, they are tests

between trained models, rather than tests between architectures, since we do not measure variability arising from training

networks from different random initializations or from different orderings of the training data.

A.1.2 Measures of correlation

Setting r
2

r ρ p-value

Logistic regression 0.97 0.99 0.99 < 10
−11

Fine-tuned 0.91 0.96 0.97 < 10
−8

Trained from scratch 0.30 0.55 0.59 0.03

Logistic regression

(public checkpoints)

0.14 0.37 0.48 0.16

Table A.1. Correlations between ImageNet accuracy and average transfer accuracy (Pearson r and r
2 and Spearman’s ρ), as well as p-values

for the null hypothesis that r = 0.

Table A.1 shows the Pearson correlation (as r2 and r) as well as the Spearman rank correlation (ρ) in each of the three

transfer settings we examine. We believe that Pearson correlation is the more appropriate measure, given that it is less

dependent on the specific CNNs chosen for the study and the effects are approximately linear, but our results are similar in

either case.

A.2. Datasets

All datasets had a median image size on the shortest side of at least 331 pixels (the highest ImageNet-native input image

size out of all networks tested), except Caltech-101, for which the median size is 225 on the shortest side and 300 on the longer

side, and CIFAR-10 and CIFAR-100, which consist of 32× 32 pixel images.

For datasets with a provided validation set (FGVC Aircraft, VOC2007, DTD, and 102 Flowers), we used this validation set

to select hyperparameters. For other datasets, we constructed a validation set by subsetting the original training set. For the

DTD and SUN397 datasets, which provide multiple train/test splits, we used only the first provided split. For the Caltech-101

dataset, which specifies no train/test split, we trained on 30 images per class and tested on the remainder, as in previous works

[6, 24, 31, 1]. With the exception of dataset subset results (Figure 9), all results indicate the performance of models retrained

on the combined training and validation set.

A.3. Networks and ImageNet training procedure

Table A.2 lists the parameter count, penultimate layer feature dimension, and input image size for each network examined.

Unless otherwise stated, our results were obtained with networks we trained, rather than publicly available checkpoints. We
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ImageNet Top-1 Accuracy

Model Parametersa Features Image Size Paper Public Checkpointb Retrained

Inception v1c [26] 5.6M 1024 224 73.2 69.8 73.6

BN-Inceptiond [15] 10.2M 1024 224 74.8 74.0 75.3

Inception v3 [27] 21.8M 2048 299 78.8 78.0 78.6

Inception v4 [25] 41.1M 1536 299 80.0 80.2 79.9

Inception-ResNet v2 [25] 54.3M 1536 299 80.1 80.4 80.3

ResNet-50 v1e [11, 9, 8] 23.5M 2048 224 76.4 75.2 76.9

ResNet-101 v1 [11, 9, 8] 42.5M 2048 224 77.9 76.4 78.6

ResNet-152 v1 [11, 9, 8] 58.1M 2048 224 N/A 76.8 79.3

DenseNet-121 [14] 7.0M 1024 224 75.0 74.8 75.6

DenseNet-169 [14] 12.5M 1024 224 76.2 76.2 76.7

DenseNet-201 [14] 18.1M 1024 224 77.4 77.3 77.1

MobileNet v1 [13] 3.2M 1024 224 70.6 70.7 72.4

MobileNet v2 [22] 2.2M 1280 224 72.0 71.8 71.6

MobileNet v2 (1.4) [22] 4.3M 1792 224 74.7 75.0 74.7

NASNet-A Mobile [32] 4.2M 1056 224 74.0 74.0 73.6

NASNet-A Large [32] 84.7M 4032 331 82.7 82.7 80.8

aExcludes logits layer.
bPerformance of checkpoint from TF-Slim repository (https://github.com/tensorflow/models/tree/master/research/slim), or,

for DenseNets, from Keras applications (https://keras.io/applications/).
cWe used Inception model code from the TF-Slim repository, which uses batch normalization layers for Inception v1. Additionally, the models in this

repository contain minor modifications compared to the models described in the original papers. We cite the performance number for BN-GoogLeNet from

Szegedy et al. [27].
dThis model is called "Inception v2" in TF-Slim model repository, but matches the model described in Ioffe and Szegedy [15], rather than the model that

Szegedy et al. [27] call "Inception v2."
eThe ResNets we train incorporate two common modifications to the original ResNet v1 model: Stride-2 downsampling on the 3× 3 convolution instead

of the first 1× 1 convolution in the block [9, 8] and initialization of the batch normalization γ to 0 in the last batch normalization layer of each block [8]. We

report the numbers from Goyal et al. [8] as the original accuracy. No public TensorFlow checkpoints are available for these models, so, for public checkpoint

results, we use the TF-Slim ResNet v1 checkpoints, which were converted from the original He et al. [11] model.

Table A.2. ImageNet classification networks

trained all networks with a batch size of 4096 using Nesterov momentum of 0.9 and weight decay of 8 × 10−5, taking an

exponential moving average of the weights with a decay factor of 0.9999. We performed linear warmup to a learning rate

of 1.6 over the first 10 epochs, and then continuously decayed the learning rate by a factor of 0.975 per epoch. We used the

preprocessing and data augmentation from [28]. To determine how long to train each network, we trained a separate model for

up to 300 epochs with approximately 50,000 ImageNet training images held out as a validation set, and then trained a model

on the full ImageNet training set for the number of steps that yielded the highest performance. Except in experiments explicitly

studying the effects of these choices, for all networks, we used scale parameters for batch normalization layers, and did not use

label smoothing, dropout, or an auxiliary head. For NASNet-A Large, we additionally disabled drop path regularization.

When training on ImageNet, we did not optimize hyperparameters for each network individually because we were able to

achieve ImageNet top-1 performance comparable to publicly available checkpoints without doing so. (When fine-tuning and

training from random initialization, we found that hyperparameters were more important and performed extensive tuning; see

below.) For all networks except NASNet-A Large, our retrained models achieved accuracy no more than 0.5% lower than

the original reported results and public checkpoint, and sometimes substantially higher (Table A.2). Given that we disabled

the regularizers used in the original model, we expected a larger performance drop. Our experiments indicate that these

regularizers further improve accuracy, but are evidently not necessary to achieve performance close to the published results.

For NASNet-A Large, there was a substantial gap between the performance of the published model and our retrained

model (82.7% vs. 80.8%). As a sanity check, we enabled label smoothing, dropout, the auxiliary head, and drop path, and

retrained NASNet-A Large with the same hyperparameters described above. This regularized model achieved 82.5% accuracy,

suggesting that most of the loss in accuracy in our setup is due to disabling regularization. For other models, we could further

improve ImageNet top-1 accuracy over published results by applying regularizers: A retrained Inception-ResNet v2 model with

label smoothing, dropout, and the auxiliary head enabled achieved 81.4% top-1 accuracy, 1.1% better than the unregularized

model and 1.3% better than the published result [25]. However, because these regularizers clearly hurt results in the logistic

regression setting, and because our goal was to compare all models and settings fairly, we report results for models trained and

fine-tuned without regularization unless otherwise specified.
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A.4. Logistic regression

For each dataset, we extracted features from the penultimate layer of the network. We trained a multinomial logistic

regression classifier using L-BFGS, with an L2 regularization parameter applied to the sum of the per-example losses, selected

from a range of 45 logarithmically spaced values from 10−6 to 105 on the validation set. Since the optimization problem

is convex, we used the solution at the previous point along the regularization path as a warm start for the next point, which

greatly accelerated the search. For these experiments, we did not perform data augmentation or scale aggregation, and we used

the entire image, rather than cropping the central 87.5% as is common for testing on ImageNet.

A.5. Finetuning

For fine-tuning experiments in Figure 2, we initialized networks with ImageNet-pretrained weights and trained for 20,000

steps at a batch size of 256 using Nesterov momentum with a momentum parameter of 0.9. We selected the optimal learning

rate and weight decay on the validation set by grid search. Our early experiments indicated that the optimal weight decay at

a given learning rate varied inversely with the learning rate, as has been recently reported [17]. Thus, our grid consisted of

7 logarithmically spaced learning rates between 0.0001 and 0.1 and 7 logarithmically spaced weight decay to learning rate

ratios between 10−6 and 10−3, as well as no weight decay. We found it useful to decrease the batch normalization momentum

parameter from its ImageNet value to max(1 − 10/s, 0.9) where s is the number of steps per epoch. We found that the

maximum performance on the validation set at any step during training was very similar to the maximum performance at

the last step, presumably because we searched over learning rate, so we did not perform early stopping. On the validation

set, we evaluated on both uncropped images and images cropped to the central 87.5% and picked the approach that gave

higher accuracy for evaluation on the test set. Cropped images typically yielded better performance, except on CIFAR-10 and

CIFAR-100, where results differed by model.

When examining the effect of dataset size (Section 4.7), we fine-tuned for at least 1000 steps or 100 epochs (following

guidance from our analysis of training time in Section 4.6) at a batch size of 64, with the learning rate range scaled down by a

factor of 4. Otherwise, we used the same settings as above. Because we chose hyperparameters based on a large validation set,

the results may not reflect what can be accomplished in practice when training on datasets of this size [18]. In Sections 4.7 and

4.6, we fine-tuned models from the publicly available Inception v4 checkpoint rather than using the model trained as above.

A.6. Training from random initialization

We used a similar training protocol for training from random initialization as for fine-tuning, i.e., we trained for 20,000

steps at a batch size of 256 using Nesterov momentum with a momentum parameter of 0.9. Training from random initialization

generally achieved optimal performance at higher learning rates and with greater weight decay, so we adjusted the learning

rate range to span from 0.001 to 1.0 and the weight decay to learning rate ratio range to span from 10−5 to 10−2.

When examining the effect of dataset size (Section 4.7), we trained from random initialization for at least 78,125 steps or

200 epochs at a batch size of 16, with the learning rate range scaled down by a factor of 16. We chose these parameters because

investigation of effects of training time (Section 4.6) indicated that training from random initialization always benefited from

increased training time, whereas fine-tuning did not. Additionally, pilot experiments indicated that training from random

initialization, but not fine-tuning, benefited from a reduced batch size with very small datasets.
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B. Logistic regression performance of public checkpoints

Logistic Regression with Publicly Available Checkpoints

Figure B.1. Accuracy of logistic regression classifiers on fixed features from publicly available checkpoints, rather than retrained models.

See also Figure 2.

We present results of logistic regression with features extracted from publicly available checkpoints in Figure B.1. With

these checkpoints, ResNets and DenseNets were consistently among the top performing models. The correlation between

ImageNet top-1 accuracy and accuracy across transfer tasks was weak and did not reach statistical significance (r = 0.37,

p = 0.16). By contrast, the correlation with between ImageNet top-1 accuracy and accuracy across transfer tasks with retrained

models (r = 0.99) was much higher (p < 10−4, z = 5.2, test of equality of nonoverlapping correlations based on dependent

groups [23, 5]).
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Figure B.2. Our retrained models consistently outperform public checkpoints for logistic regression. See Figure B.1 for legend.

Retrained models achieved higher transfer accuracy than publicly available checkpoints. For 11 of the 12 datasets

investigated (all but Oxford Pets), features from the best retrained model achieved higher accuracy than features from the best

publicly available checkpoint. Retrained models achieved higher accuracy for 84% of dataset/model pairs (162/192), and

transfer accuracy averaged across datasets was higher for retrained models for all networks except MobileNet v1 (Figure B.2).

The best retrained model, Inception-ResNet v2, achieved an average log odds of 1.58, whereas the best public checkpoint,

ResNet v1 152, achieved an average log odds of 1.35 (t(11) = 5.6, p = 0.0002).
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C. Extended analysis of effect of training/regularization settings

C.1. Performance of penultimate layer features
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Figure C.1. When performing logistic regression on penultimate layer features, all datasets and models benefit from removal of regularization.

Each subplot represents transfer performance on one of the datasets investigated. The top right plot shows ImageNet top-1 accuracy of

the models. Points along the x-axis represent different training settings (presence/absence of batch normalization scale parameter, label

smoothing, dropout, and presence/absence of auxiliary head), following the same convention as in Figure 3. The leftmost setting is the

Inception default, and uses no batch normalization scale parameter, but includes label smoothing, dropout, and an auxiliary head. From left

to right, we enable the batch normalization scale parameter; disable label smoothing; disable dropout; and disable the auxiliary head.

Figure C.1 shows performance of penultimate layer features in each of the training settings in Figure 3, broken down by

dataset. Across nearly all datasets and models, the least-regularized models achieved the highest performance, even though

these models were not the best in terms of ImageNet top-1 accuracy. We also experimented with removing weight decay, but

found that this yielded substantially lower performance on both ImageNet and all transfer datasets except for FGVC Aircraft.
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Figure C.2. Regularization affects transfer learning with fixed features earlier in training than ImageNet top-1 accuracy. Transfer learning

performance of Inception v4 checkpoints evaluated every 12 epochs. Triangles represent the checkpoint that optimized performance on a

validation set split from the training set, in a separate training run.

To investigate whether the effect of regularization upon the performance of fixed features was mediated by training time,
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rather than the regularization itself, we performed logistic regression on penultimate layer features from Inception v4 at

different epochs over training (Figure C.2). For models with more regularizers, checkpoints from earlier in training typically

performed better than the checkpoint that achieved the best accuracy on ImageNet. However, on most datasets, the best

checkpoint without regularization outperformed all checkpoints with regularization. For most datasets, the best transfer

accuracy was achieved at around the same number of training epochs as the best ImageNet top-1 accuracy, but on FGVC

Aircraft, we found that a checkpoint early in training yielded much higher accuracy.

C.2. Finetuning performance
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Figure C.3. Using regularizers at ImageNet pretraining time does not benefit fine-tuning performance unless the same regularizers are

used to fine-tune. Blue points represent models pretrained and fine-tuned with the same training configuration, as in Figure 5. Orange

points represent models pretrained with different configurations but fine-tuned without regularization or an auxiliary head (the rightmost

configuration in the plot). Accuracy is averaged across 3 fine-tuning runs each for 2 rounds of hyperparameter tuning.

In this section, we present an expanded analysis of the effect of regularization upon fine-tuning analysis. Figure C.3 shows

average fine-tuning both performance across datasets when fine-tuning with the same settings as used for pretraining (blue,

same data as in Figure 5), and when pretraining with regularization but fine-tuning without any regularization (orange). For all

regularization settings, benefits are only clearly observed when the regularization is used for both pretraining and fine-tuning.

Figure C.4 shows results broken down by dataset for pretraining and fine-tuning with the same settings.

Overall, the effect of regularization upon fine-tuning performance was much smaller than the effect upon the performance

of logistic regression on penultimate layer features. As in the logistic regression setting, enabling batch normalization scale

parameters and disabling label smoothing improved performance. Effects of dropout and the auxiliary head were not entirely

consistent across models and datasets (Figure C.4). Inception-ResNet v2 clearly performed better when the auxiliary head

was present. For Inception v4, the auxiliary head improved performance on some datasets (Food-101, FGVC Aircraft,

VOC2007, and Oxford Pets) but worsened performance on others (CIFAR-100, DTD, Oxford 102 Flowers). However, because

improvements were only observed when the auxiliary head was used both for pretraining and fine-tuning, it is unclear whether

the auxiliary head leads to better weights or representations. It may instead improve fine-tuning performance by acting as a

regularizer at fine-tuning time.
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Figure C.4. For fine-tuning, different training settings are best on different datasets. Points along the x-axis represent different training

settings (presence/absence of batch normalization scale parameter, label smoothing, dropout, and presence/absence of auxiliary head),

following the same convention as in Figure C.3. The leftmost setting is the Inception default, and uses no batch normalization scale parameter,

but includes label smoothing, dropout, and an auxiliary head. From left to right, we enable the batch normalization scale parameter; disable

label smoothing; disable dropout; and disable the auxiliary head. Each line shows performance for a different fine-tuning run.

D. Relationship between dataset size and predictive power of ImageNet accuracy
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Figure D.1. When training from random initialization, the correlation between ImageNet top-1 accuracy and transfer accuracy is higher

for larger datasets. Each point represents one of the 12 datasets investigated. The y-axis represents the Pearson correlation between

ImageNet top-1 accuracy and accuracy for that dataset, based on the 16 ImageNet networks investigated, and is scaled according to the

Fisher z-transformation. The x-axis is log-scaled. r and p values in bottom left reflect the correlation between the log-transformed training

set size and Fisher z-transformed correlations.

As datasets get larger, ImageNet accuracy becomes a better predictor of the performance of models trained from scratch.

Figure D.1 shows the relationship between the dataset size and the correlation between ImageNet accuracy and accuracy on

other datasets, for each of the 12 datasets investigated. We found that there was a significant relationship when networks were

trained from random initialization (p = 0.0002), but there were no significant relationships in the transfer learning settings.

One possible explanation for this behavior is that ImageNet performance measures both inductive bias and capacity. When

training from scratch on smaller datasets, inductive bias may be more important than capacity.
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E. Additional comparisons of logistic regression, fine-tuning, and training from random initializa-

tion

Figure E.1. Scatter plots comparing trained models in each pair of settings investigated. Axes are logit-scaled.

Figure E.1 presents additional scatter plots comparing performance in the three settings we investigated. Fine-tuning usually

achieved higher accuracy than logistic regression on top of fixed ImageNet features or training from randomly initialized

models, but for some datasets, the gap was small. The performance of logistic regression on fixed ImageNet features vs.

networks trained from random initialization was heavily dependent on the dataset.

F. Comparison versus state-of-the-art

Previously reported Current work

Dataset Acc. Method Acc. Best network

Food-101 90.4 Domain-specific transfer @ 448 [4] 90.0 (90.8a) Inception v4, fine-tuned

CIFAR-10 98.5 AutoAugment [3] 98.0b NASNet-A Large, fine-tuned

CIFAR-100 89.3 AutoAugment [3] 87.5b NASNet-A Large, fine-tuned

Birdsnap 80.2c Mask-CNN @ 448 [29] 78.4 (81.8a) Inception v4, fine-tuned

SUN397 70.2 Places/ImageNet-pretrained multi-scale

VGG ensemble [12]

66.4 (68.3a) Inception v4, fine-tuned

Stanford Cars 94.8 AutoAugment @ 448 [3] 93.3 (93.4a) Inception v4, fine-tuned

FGVC Aircraft 92.9c Deep layer aggregation @ 448 [30] 89.0 (90.9a) Inception v4, fine-tuned

VOC 2007 Cls. 89.7 VGG multi-scale ensemble [24] 87.4 (88.2a) Inception v4, fine-tuned

DTD 75.5 FC+FV-CNN+D-SIFT [2] 78.1 Inception v4, fine-tuned

Oxford-IIIT Pets 93.8 Object-part attention [20] 94.5 ResNet-152 v1, fine-tuned

Caltech-101 93.4 Spatial pyramid pooling [10] 95.1 Inception-ResNet v2, log. regression

Oxford 102 Flowers 97.7 Domain-specific transfer [4] 98.5 Inception v4, fine-tuned

aFor datasets where the best published result evaluated at 448× 448 or at multiple scales, we provide results at 448× 448 in parentheses.
bAccuracy excludes images duplicated between the ImageNet training set and CIFAR test sets; see Appendix H. A previous version of this paper achieved

accuracies of 98.4% on CIFAR-10 and 88.2% on CIFAR-100 by fine-tuning the public NASNet checkpoint with the auxiliary head, dropout, and drop path.

The difference in this version is due to the change in settings; the previous results remain valid.
cKrause et al. [16] achieve 85.4% on Birdsnap and 95.9% on Aircraft using bird and aircraft images collected from Google image search.

Table F.1. Performance of best models.

Table F.1 shows the best previously reported results of which we are aware on each of the datasets investigated. We achieve

state-of-the-art performance on either 4 datasets at networks’ native image sizes, or 6 if we retrain networks at 448× 448, as

some previous transfer learning works have done. For CIFAR-10, CIFAR-100, and Stanford Cars, the best result was trained

from scratch; for all other datasets, the baselines use some form of ImageNet pretraining.
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G. Comparison of alternative classifiers

In addition to the logistic regression without data augmentation setting described in the main text, we investigated transfer

learning performance using support vector machines without data augmentation, and using logistic regression with data

augmentation. Results are shown in Figure G.1.

G.1. SVM

Although a logistic regression classifier trained on the penultimate layer activations has a natural interpretation as retraining

the last layer of the neural network, many previous studies have reported results with support vector machines [6, 21, 1, 24].

Thus, we examine performance in this setting as well (Figure G.1A-D). Following previous work [24, 1], we L2-normalized

the input to the model along the feature dimension. We used the SVM implementation from scikit-learn [7, 19], selecting the

value of the hyperparameter C from 26 logarithmically spaced values between 0.001 and 100. SVM and logistic regression

results were highly correlated (r = 0.998). For most (146/192) dataset/model pairs, logistic regression outperformed SVM,

but differences were small (average log odds 1.32 vs. 1.28, p < 10−19, t-test).

G.2. Logistic regression with data augmentation

Finally, we trained a logistic regression classifier with data augmentation, in the same setting we use for fine-tuning. We

trained for 40,000 steps with Nesterov momentum and a batch size of 256. Because the optimization problem is convex, we did

not optimize over learning rate, but instead fixed the initial learning rate at 0.1 and used a cosine decay schedule. We optimized

over L2 regularization parameters for the final layer, applied to the mean of the per-example losses, selected from a range of

10 logarthmically spaced values between 10−10 and 0.1. Results are shown in Figure G.1E-H. No findings changed. Transfer

accuracy with data augmentation was highly correlated with ImageNet accuracy (Figure G.1F) and with results without data

augmentation (Figure G.1G; r = 0.99 for both correlations). Fine-tuning remained clearly superior to logistic regression with

data augmentation, achieving better results for 188/192 dataset/model pairs (Figure G.1H).

Logistic regression with data augmentation performed better for 100/192 dataset/model pairs. Data augmentation gave a

slight improvement in average log odds (1.35 vs. 1.32), but the best performing model without data augmentation was better

than the best performing model with data augmentation on half of the 12 datasets.
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A B C
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E F G

H

SVM

Logistic Regression with Data Augmentation

Figure G.1. Analysis of SVM and logistic regression with data augmentation, performed on fixed features. A and E: Scatter plots of

ImageNet top-1 accuracy versus transfer accuracy on each of the 12 datasets examined. See also Figure 2. B and F: ImageNet top-1 accuracy

versus average transfer accuracy for each network investigated. C and G: Performance of logistic regression without data augmentation

versus SVM (C) or logistic regression with data augmentation (G). D and H: Performance of SVM (D) or logistic regression with data

augmentation (H) versus fine-tuning. See also Figure E.1.
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H. Duplicate images

Dataset Train Size Test Size Train Dups Test Dups Train Dup % Test Dup %

Food-101 75,750 25,250 2 1 0.00% 0.00%

CIFAR-10 50,000 10,000 703 137 1.41% 1.37%

CIFAR-100 50,000 10,000 1,134 229 2.27% 2.29%

Birdsnap 47,386 2,443 431 23 0.91% 0.94%

SUN397 19,850 19,850 113 95 0.57% 0.48%

Stanford Cars 8,144 8,041 10 14 0.12% 0.17%

FGVC Aircraft 6,667 3,333 0 1 0.00% 0.03%

VOC2007 5,011 4,952 46 38 0.92% 0.77%

DTD 3,760 1,880 14 9 0.37% 0.48%

Oxford-IIIT Pets 3,680 3,669 227 58 6.17% 1.58%

Caltech-101 3,060 6,084 28 21 0.92% 0.35%

102 Flowers 2,040 6,149 1 0 0.05% 0.00%
Table H.1. Prevalence of images duplicated between the ImageNet training set and datasets investigated for transfer.

We used a CNN-based duplicate detector trained on synthesized image triplets to detect images that were present in both

the ImageNet training set and the datasets we examine. Because the duplicate detector is optimized for speed, it is imperfect.

We used a threshold that was conservative based on manual examination, i.e., it resulted in some false positives but very few

false negatives. Thus, the results below represent a worst-case scenario for overlap in the datasets examined. Generally, there

are relatively few duplicates. For most of these datasets, standard practice is to fine-tune an ImageNet pretrained network

without special handling of duplicates, so the presence of duplicates does not affect the comparability of our results to previous

work. However, for CIFAR-10 and CIFAR-100, we compare against networks trained from scratch and there are a substantial

number of duplicates, so we exclude duplicates from the test set.

On CIFAR-10, we achieve an accuracy of 98.04% when fine-tuning NASNet Large (the best model) on the full test set. We

also achieve an accuracy of 98.02% on the 9,863 example test set that is disjoint with the ImageNet training set. We achieve an

accuracy of 99.27% on the 137 duplicates. On CIFAR-100, we achieve an accuracy of 87.7% on the full test set. We achieve

an accuracy of 87.5% on the 9,771 example test set that is disjoint from the ImageNet training set, and an accuracy of 95.63%

on the 229 duplicates.

I. Numerical performance results

We present the numerical results for logistic regression, fine-tuning, and training from random initialization in Table I.1.

Bold-faced numbers represent best models, or models insignificantly different from the best, in each training setting.
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Logistic regression

Network Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech101 Flowers

Inception v1 68.3 89.8 72.3 49.9 58.8 53.8 53.0 81.1 71.3 90.0 91.93 92.1

BN-Inception 69.5 91.0 73.9 52.0 59.6 53.7 53.1 82.1 70.1 90.9 91.32 91.8

Inception v3 74.9 92.5 76.2 58.6 63.1 65.3 60.5 84.0 73.9 92.3 92.98 94.1

Inception v4 75.8 92.9 76.9 61.4 63.9 64.2 59.9 84.9 74.6 93.4 93.65 93.0

Inception-ResNet v2 78.6 93.8 78.5 62.3 65.8 67.9 63.3 85.2 74.7 92.9 95.06 94.9

ResNet-50 v1 74.1 91.8 76.0 52.2 62.5 59.5 58.5 83.5 74.9 91.5 92.74 93.2

ResNet-101 v1 75.1 93.6 78.9 55.3 64.0 60.1 57.4 84.5 74.9 92.2 92.65 93.1

ResNet-152 v1 75.8 93.8 79.2 55.7 64.1 60.2 56.9 84.8 75.0 92.4 93.96 93.5

DenseNet-121 72.0 90.5 73.8 51.9 60.7 57.3 53.5 82.6 74.8 91.2 92.13 93.3

DenseNet-169 72.7 91.8 76.2 54.9 61.2 59.0 57.2 83.0 73.4 92.0 93.75 93.4

DenseNet-201 73.2 92.2 76.4 54.2 61.9 60.3 57.1 83.6 73.2 91.4 93.15 93.1

MobileNet v1 68.2 88.2 70.9 46.3 58.8 52.9 52.6 80.2 71.0 87.4 90.77 92.7

MobileNet v2 68.4 88.6 70.6 46.3 57.6 51.6 52.9 80.0 71.7 88.1 91.26 91.7

MobileNet v2 (1.4) 71.6 89.8 73.4 50.0 60.3 56.1 55.2 81.9 73.0 89.3 91.83 93.5

NASNet-A Mobile 68.9 91.3 73.6 52.4 58.8 49.8 51.5 80.8 70.3 90.0 91.52 91.8

NASNet-A Large 76.9 93.8 78.0 62.8 65.1 63.7 62.8 85.8 74.5 93.5 93.89 93.8

Fine-tuned

Network Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech101 Flowers

Inception v1 85.6 96.17 83.2 73.0 62.0 91.0 82.7 83.2 73.6 91.9 91.7 97.26

BN-Inception 86.8 96.67 84.8 72.9 62.8 91.7 85.8 84.6 73.9 92.3 92.8 97.2

Inception v3 88.8 97.5 86.6 77.2 65.7 92.3 88.8 86.6 77.2 93.5 94.3 97.98

Inception v4 90.0 97.93 87.5 78.4 66.4 93.3 89.0 87.4 78.1 93.7 94.9 98.45

Inception-ResNet v2 89.4 97.87 86.8 76.3 65.9 92.0 86.7 86.7 77.1 93.3 93.9 97.85

ResNet-50 v1 87.8 96.77 84.5 74.7 64.7 91.7 86.6 85.7 75.2 92.5 91.8 97.51

ResNet-101 v1 87.6 97.68 87.0 73.8 64.8 91.7 85.6 86.6 76.2 94.0 93.1 97.94

ResNet-152 v1 87.6 97.91 87.6 74.3 66.0 92.0 85.3 86.8 75.4 94.5 93.2 97.35

DenseNet-121 87.7 97.18 84.8 73.2 62.3 91.5 85.4 85.1 74.9 92.9 91.9 97.18

DenseNet-169 88.0 97.4 85.0 71.4 63.0 91.5 84.5 85.9 74.8 93.1 92.5 97.86

DenseNet-201 87.3 97.41 86.0 72.6 64.7 91.0 84.6 85.8 74.5 92.8 93.4 97.68

MobileNet v1 87.1 96.15 82.3 69.2 61.7 91.4 85.8 82.6 73.4 89.9 90.1 96.67

MobileNet v2 86.2 95.74 80.8 69.3 60.5 91.0 82.8 82.1 72.9 90.5 89.1 96.63

MobileNet v2 (1.4) 87.7 96.13 82.5 71.5 62.6 91.8 86.8 83.4 73.0 91.0 91.1 97.52

NASNet-A Mobile 85.5 96.83 83.9 68.3 60.7 88.5 72.8 83.5 72.8 89.4 91.5 96.83

NASNet-A Large 88.9 98.04 87.7 77.9 66.2 91.1 87.2 87.2 74.3 93.3 94.5 98.22

Trained from random initialization

Network Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech101 Flowers

Inception v1 83.1 94.03 77.0 68.6 53.1 90.1 83.7 66.9 61.9 79.1 73.3 90.9

BN-Inception 84.4 95.17 80.2 69.6 52.5 90.7 81.7 66.9 64.4 79.3 74.3 92.8

Inception v3 86.6 95.61 80.8 75.3 54.9 91.6 87.7 70.8 65.1 83.2 77.0 93.5

Inception v4 86.7 96.05 81.0 75.9 55.0 92.7 88.8 70.9 66.8 81.2 75.4 93.9

Inception-ResNet v2 87.0 94.85 79.9 74.2 54.2 89.9 84.9 67.0 59.6 76.9 71.8 92.5

ResNet-50 v1 84.3 94.17 78.6 68.2 51.5 88.5 79.6 64.9 62.3 78.1 65.6 87.9

ResNet-101 v1 85.6 94.81 79.9 69.5 51.5 88.2 78.6 61.6 62.6 76.2 64.6 87.8

ResNet-152 v1 85.9 94.61 80.8 68.9 51.1 88.6 78.2 61.9 61.1 74.0 64.9 88.7

DenseNet-121 84.8 95.35 79.5 70.4 52.6 90.1 82.1 65.9 62.9 78.6 73.5 91.2

DenseNet-169 84.8 95.53 80.0 71.1 53.2 89.7 82.8 64.6 61.3 79.9 73.8 91.9

DenseNet-201 85.3 96.05 80.8 70.4 52.4 89.3 78.4 66.9 60.7 80.3 72.4 90.8

MobileNet v1 82.4 93.88 77.9 64.8 51.8 89.6 81.1 67.2 63.1 78.5 73.0 90.5

MobileNet v2 80.9 93.68 75.2 64.3 48.8 88.6 81.3 67.8 63.7 78.5 67.7 89.9

MobileNet v2 (1.4) 81.9 94.07 75.5 66.8 51.1 89.0 82.7 66.3 63.1 80.1 73.1 91.9

NASNet-A Mobile 81.9 94.73 78.3 65.9 48.3 86.7 75.1 57.9 60.1 69.4 63.5 85.8

NASNet-A Large 86.8 96.06 79.2 75.5 54.3 90.9 88.2 65.2 60.5 77.8 73.6 91.8

Table I.1. Model performance
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