Supplementary Materials for: "Content Authentication for Neural Imaging Pipelines: End-to-end Optimization of Photo Provenance in Complex Distribution Channels"

Paweł Korus^{1,2} and Nasir Memon¹ New York University¹, AGH University of Science and Technology² http://kt.agh.edu.pl/~korus

1. Source Code

To facilitate further research in this direction, and enable reproduction of our results, our neural imaging toolbox is available at https://github.com/pkorus/ neural-imaging.

2. Implementation Details

We implemented the entire acquisition and distribution pipeline in Python 3 and Tensorflow v. 1.11.0. In all experiments, we used the Adam optimizer with default settings. We proceeded in the following stages:

- 1. Training and validation of the NIPs.
- 2. Validation of the FAN for manipulation detection with no distribution channel between postprocessing and forensic analysis.
- 3. Joint optimization of the FAN & NIP models with active distribution channel.

The NIP models trained in stage (1) were then used in (2) and (3) for NIP initialization to speed-up training.

2.1. NIP Architectures

We considered several NIP models with various levels of complexity. The simplest *INet* model was handcrafted to replicate the standard imaging pipeline. The architecture (Tab. 2) is a simple sequential concatenation of convolutional layers. Each operation was initialized with meaningful values (see Tab. 2) which significantly sped up convergence. (We also experimented with random initialization, but this led to slower training and occasional problems with color fidelity.) The last two layers were initialized with parameters from a simple 2-layer network trained to approximate gamma correction for a scalar input (4 hidden nodes + one output node). The UNet model (Tab. 3) was the most complex of the considered models, but it delivered fairly quick convergence due to skip connections [10]. We adapted the implementation from a recent work by Chen et al. [4]. The configuration of skip connections is shown in detail in Tab. 3. All convolutional layers produce tensors of the same spatial dimensions, eliminating the need for cropping.

We also experimented with two recent networks used for joint demosaicing and denoising (DNet - Tab. 4) [7], and for general-purpose image processing (CNet) [5]. Overall, the results were unsuccessful. The *DNet* model was able to learn a high-fidelity photo development process, but converged very slowly due to colorization and sharpness artifacts. The trained model proved to be rather fragile, and quickly deteriorated during joint NIP and FAN optimization¹. We were unable to obtain satisfactory photo development using the *CNet* model - the validation PSNR stopped improving around 25-27 dB.

All models were trained to replicate the output of a manually implemented imaging pipeline. (Detailed, per-camera validation performance measurements are shown in Tab. 1.) We used rawkit [3] wrappers over libRAW [8]. Demosaicing was performed using an adaptive algorithm by Menon et al. [9] from the colourdemosaicing package. We used learning rate of 10^{-4} and continued training until the average validation loss for the last 5 epochs changes by more than 10^{-4} . The maximal number of epochs was set to 50,000. Due to patch-based training, we did not perform any

¹In more recent experiments with explicit regularization of the impact of the NIP's L_2 loss, we were able to improve *DNet*'s performance. However, the model still remains more fragile and reaching classification accuracy comparable to *UNet* leads to excessive artifacts. In addition to noise-like artifacts, the model looses edge sharpness. With a visually acceptable distortion, the model yielded accuracy between 70-80%. More detailed results will be available in an extended version of this work.

Table 1. Detailed validation performance statistics for all cameras and all NIPs.

Camera	INet		UNet		DNet	
	\mathbf{PSNR}^1	SSIM	\mathbf{PSNR}^1	SSIM	\mathbf{PSNR}^1	SSIM
Canon EOS 40D	42.7	0.987	43.6	0.990	44.5	0.992
Canon EOS 5D	42.4	0.987	44.8	0.992	48.4	0.997
Nikon D5100	43.7	0.989	45.3	0.990	48.1	0.996
Nikon D700	44.7	0.993	45.6	0.994	47.2	0.997
Nikon D7000	42.3	0.989	44.4	0.992	44.9	0.994
Nikon D750	42.7	0.990	44.8	0.994	45.5	0.996
Nikon D810	39.6	0.984	41.9	0.991	43.6	0.995
Nikon D90	44.6	0.993	44.4	0.991	47.7	0.997

¹ PSNR values in [dB]

global post-processing (e.g., histogram stretching). In each epoch, we randomly selected patches from fullresolution images, and fed them to the network in batches of 20 examples. We used input examples of size $64 \times 64 \times 4$ (RGGB) which are developed into $128 \times 128 \times 3$ (RGB) color patches. The final networks can work on arbitrary inputs without any changes. Fig. 1 shows an example full-resolution (12 Mpx) image developed with the standard (ab) and the neural pipelines (cde).

2.2. JPEG Codec Approximation

The architecture of the dJPEG model is shown in Tab. 5. The network was hand-crafted to replicate the operation of the standard JPEG codec with no chrominance sub-sampling (the 4:4:4 mode). We used standard quantization matrices from the IJG codec [1]. See the main body of the paper for approximation details. The input to the network is an image batch, and should be normalized to [0, 1].

2.3. The FAN Architecture

The FAN architecture (Tab. 6) is a fairly standard CNN model with an additional constrained convolution layer recommended for forensics applications [2]. In contrast to the study by Bayar and Stamm, who used only the green color channel, we take all color channels (RGB). We also used larger patches for better statistics - in all experiments, the input size is 128×128 px.

The network starts with a convolution layer constrained to learn a residual filter. We initialized the layer with the following residual filter (padded with zeros to 5×5):

$$\begin{bmatrix} -1, -2, -1\\ -2, 12, -2\\ -1, -2, -1 \end{bmatrix}.$$
 (1)

We used leaky ReLUs instead of tanh for layer activation, and dispensed with batch normalization due to small network size and fast convergence without it.

2.4. Training Details

In our implementation, we use two Adam optimizers (with default settings) for: (1) updating the FAN (and in joint training also the NIP) based on the crossentropy loss; (2) updating the NIP based on the image fidelity loss (L_2). The optimization steps are run in that order. To ensure comparable loss values, the L_2 loss was computed based on images normalized to the standard range [0,255]. Analogously to standalone NIP training, we feed raw image patches extracted from full-resolution images. In each epoch, the patches are chosen randomly, and fed in batches of 20. We start with learning rate of 10^{-4} and decrease it by 15% every 50 epochs.

References

- Independent JPEG Group. http://www.ijg.org/. visited 18 Apr 2017. ii
- [2] B. Bayar and M. Stamm. Constrained convolutional neural networks: A new approach towards general purpose image manipulation detection. *IEEE Tran. Information Forensics* and Security, 13(11):2691–2706, 2018. ii
- [3] P. Cameron and S. Whited. Rawkit. https://rawkit. readthedocs.io/en/latest/. Visited Nov 2018. i
- [4] C. Chen, Q. Chen, J. Xu, and V. Koltun. Learning to see in the dark. arXiv, 2018. arXiv:1805.01934. i
- [5] Q. Chen, J. Xu, and V. Koltun. Fast image processing with fully-convolutional networks. arXiv, 2017. arXiv:1709.00643v1. i
- [6] D. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato. RAISE - a raw images dataset for digital image forensics. In Proc. of ACM Multimedia Systems, 2015. iii
- [7] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand. Deep joint demosaicking and denoising. ACM Tran. Graphics, 35(6):1–12, nov 2016. i
- [8] LibRaw LLC. libRAW. https://www.libraw.org/. Visited Nov 2018. i
- [9] D. Menon, S. Andriani, and G. Calvagno. Demosaicing with directional filtering and a posteriori decision. *IEEE Tran. Image Processing*, 16(1):132–141, 2007. i
 [10] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
- [10] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Int. Conf. Medical Image Computing and Computer-assisted Intervention. Springer, 2015. i

(a) our implementation of the standard pipeline

(b) libRAW with default settings

(c) developed by the INet model

(d) developed by the UNet model

(e) developed by the DNet model

Figure 1. An example full-resolution (12.3 Mpx) image developed with standard pipelines (ab) and the considered NIPs (cde): image r23beab04t from the Nikon D90 camera (Raise dataset [6]). The full-size images are included as JPEGs (quality 85, 4:2:0) to limit PDF size. Close-up patches are included as uncompressed PNG files.

			r r r r	
Operation	Activation	Initialization	Function	Output size
Input	-	-	RGGB feature maps	$N \times \frac{h}{2} \times \frac{w}{2} \times 4$
1×1 convolution	-	hand-crafted binary sample selection ¹	Reorganizes data for up-sampling	$N \times \frac{\hbar}{2} \times \frac{\tilde{w}}{2} \times 12$
Depth to space	-	-	Up-sampling	$N \times \tilde{h} \times \tilde{w} \times 3$
5×5 convolution	-	zero-padded 3×3 bilinear kernel	Demosaicing	$N\times h\times w\times 3$
1×1 convolution	-	sample color conversion matrix	Color-space conversion (sRGB)	$N\times h\times w\times 3$
1×1 convolution	anh	pre-trained model	Gamma correction ²	$N \times h \times w \times 12$
1×1 convolution	-	pre-trained model	Gamma correction ²	$N \times h \times w \times 3$
Clip to $[0,1]$	-	-	output RGB image	$N \times h \times w \times 3$

Table 2. The INet architecture: 321 trainable parameters

 $\frac{1}{1}$ we disabled optimization of this filter to speed up convergence $\frac{2}{1}$ adapted from a 2-layer network trained separately to approximate gamma correction

Table 3. The UNet architecture: 7,760,268 trainable parameters				
Operation	Activation	Input	Output	Output size
Input 3×3 convolution 3×3 convolution 2×2 max pooling	- leaky ReLU leaky ReLU -	$x \\ c_{1,1} \\ c_{1,2}$	$x \ c_{1,1} \ c_{1,2} \ p_1$	$ \begin{array}{l} N\times h/2\times w/2\times 4\\ N\times h/2\times w/2\times 32\\ N\times h/2\times w/2\times 32\\ N\times h/4\times w/4\times 32 \end{array} $
3×3 convolution 3×3 convolution 2×2 max pooling	leaky ReLU leaky ReLU -	$p_1 \\ c_{2,1} \\ c_{2,2}$	$c_{2,1} \\ c_{2,2} \\ p_2$	$\begin{array}{l} N\times h/4\times w/4\times 64\\ N\times h/4\times w/4\times 64\\ N\times h/8\times w/8\times 32 \end{array}$
3×3 convolution 3×3 convolution 2×2 max pooling	leaky ReLU leaky ReLU -	$p_2 \ c_{3,1} \ c_{3,2}$	$c_{3,1} \\ c_{3,2} \\ p_3$	$\begin{array}{l} N\times h/8\times w/8\times 128\\ N\times h/8\times w/8\times 128\\ N\times h/16\times w/16\times 128 \end{array}$
3×3 convolution 3×3 convolution 2×2 max pooling	leaky ReLU leaky ReLU -	$p_3 \ c_{4,1} \ c_{4,2}$	$c_{4,1} \\ c_{4,2} \\ p_4$	$\begin{array}{l} N\times h/16\times w/16\times 256\\ N\times h/16\times w/16\times 256\\ N\times h/32\times w/32\times 256 \end{array}$
3×3 convolution 3×3 convolution 2×2 strided convolution	leaky ReLU leaky ReLU -	$p_4 \ c_{5,1} \ c_{5,2}$	$c_{5,1} \\ c_{5,2} \\ s_5$	$\begin{array}{l} N\times h/32\times w/32\times 512\\ N\times h/32\times w/32\times 512\\ N\times h/16\times w/16\times 256 \end{array}$
3×3 convolution 3×3 convolution 2×2 strided convolution	leaky ReLU leaky ReLU -	$s_5 \mid c_{4,2} \ c_{6,1} \ c_{6,2}$	$c_{6,1} \\ c_{6,2} \\ s_6$	$\begin{array}{l} N\times h/16\times w/16\times 256\\ N\times h/16\times w/16\times 256\\ N\times h/8\times w/8\times 128 \end{array}$
3×3 convolution 3×3 convolution 2×2 strided convolution	leaky ReLU leaky ReLU -	$s_6 \mid c_{3,2} \\ c_{7,1} \\ c_{7,2}$	$c_{7,1} \\ c_{7,2} \\ s_7$	$\begin{array}{l} N\times h/8\times w/8\times 128\\ N\times h/8\times w/8\times 128\\ N\times h/4\times w/4\times 64 \end{array}$
3×3 convolution 3×3 convolution 2×2 strided convolution	leaky ReLU leaky ReLU -	$s_7 \mid c_{2,2} \\ c_{8,1} \\ c_{7,2}$	$c_{8,1} \\ c_{8,2} \\ s_8$	$\begin{array}{c} N\times h/4\times w/4\times 64\\ N\times h/4\times w/4\times 64\\ N\times h/2\times w/2\times 32 \end{array}$
3×3 convolution 3×3 convolution 1×1 convolution	leaky ReLU leaky ReLU -	$s_8 \mid c_{1,2} \\ c_{9,1} \\ c_{9,2}$	$c_{9,1} \\ c_{9,2} \\ c_{10}$	$\begin{array}{c} N\times h/2\times w/2\times 32\\ N\times h/2\times w/2\times 32\\ N\times h/2\times w/2\times 12 \end{array}$
Depth to space Clip to [0,1]	-	$c_{10} \\ y_{ m rgb}$	$egin{array}{c} y_{\mathrm{rgb}} \ y \end{array}$	$egin{array}{c} N imes h imes w imes 3\ N imes h imes w imes 3 \end{array}$

Table 3. The UNet arch	nitecture: 7.760.268	trainable parameters
Table 5. The Orice area	incentific: 1,100,200	tramable parameters

All leaky ReLUs have $\alpha = 0.2$

| denotes concatenation along the feature dimension

Operation	Activation	Input	Output	Output size
Input	-	-	c_0	$N\times h/2\times w/2\times 4$
Repeat for $i = 1, 2,, 14$ 3×3 convolution + BN Padding (reflection) }	{ ReLU -	$c_{i-1} \ \hat{c}_i$	$\hat{c}_i \ c_i$	$\begin{array}{l} N\times h/2-2\times w/2-2\times 64\\ N\times h/2\times w/2\times 64 \end{array}$
3×3 convolution + BN Padding (reflection)	ReLU -	$c_{14} \\ \hat{c}_{15}$	$\hat{c}_{15} \\ c_{15}$	$\begin{array}{l} N\times h/2-2\times w/2-2\times 12\\ N\times h/2\times w/2\times 12 \end{array}$
Depth to space	-	c_{15}	$f_{\rm conv}$	$N\times h\times w\times 3$
1×1 convolution Depth to space	-	$c_0 \\ c_{16}$	$c_{16} f_{ m bayer}$	$\begin{array}{l} N\times h/2\times w/2\times 12\\ N\times h\times w\times 3 \end{array}$
$\begin{array}{c} 3 \times 3 \text{ convolution} \\ \text{Padding (reflection)} \\ 1 \times 1 \text{ convolution} \\ \text{Clip to } [0,1] \end{array}$	ReLU - -	$egin{array}{lll} f_{ m conv} & \mid f_{ m bayer} \ \hat{c}_{17} \ \hat{c}_{17} \ c_{17} \ y_{ m rgb} \end{array}$	$\hat{c}_{17} \ c_{17} \ y_{ m rgb} \ y$	$ \begin{array}{l} N\times h-2\times w-2\times 64\\ N\times h\times w\times 64\\ N\times h\times w\times 3\\ N\times h\times w\times 3 \end{array} $

Table 4. The DNet architecture: 493,976 trainable parameters

| denotes concatenation along the feature dimension

Table 5. The dJPEG architecture for JPEG codec approximation

Operation	JPEG Function	Output size
Input	-	$N\times h\times w\times 3$
1×1 convolution	$RGB \rightarrow YCbCr$	$N \times h \times w \times 3$
Space to depth & reshapes	Isolate 8×8 px blocks	$3N \times 8 \times 8 \times B$
Transpose & reshape	-	$3BN \times 8 \times 8$
$2 \times \text{matrix multiplication}$	Forward 2D DCT	$3BN \times 8 \times 8$
Element-wise matrix division	Divide by quantization matrices	$3BN \times 8 \times 8$
Rounding / approximate rounding	Quantization	$3BN \times 8 \times 8$
Element-wise matrix multiplication	Multiply by quantization matrices	$3BN \times 8 \times 8$
$2 \times \text{matrix multiplication}$	Inverse 2D DCT	$3BN \times 8 \times 8$
Transpose & reshape	-	$3N \times 8 \times 8 \times B$
Depth to space & reshapes	Re-assemble 8×8 px blocks	$N\times h\times w\times 3$
1×1 convolution	$YCbCr \rightarrow RGB$	$N\times h\times w\times 3$

Table 6. The FAN architecture: 1,341,990 trainable parameters

Operation	Activation	Initialization	Comment	Output size
Input E v E convolution	-	- Standard residual filter	RGB input	$N \times h \times w \times 3$
5 × 5 convolution	-	Standard residual litter	Constrained convolution	$N \times n \times w \times 3$
5×5 convolution	leaky ReLU	MSRA	-	$N\times h\times w\times 32$
$2 \times 2 \max$ pool	-	-	-	$N \times h/2 \times w/2 \times 32$
5×5 convolution	leaky ReLU	MSRA	-	$N \times h/2 \times w/2 \times 64$
$2 \times 2 \max$ pool	-	-	-	$N \times h/4 \times w/4 \times 64$
5×5 convolution	leaky ReLU	MSRA	-	$N \times h/4 \times w/4 \times 128$
$2 \times 2 \max$ pool	-	-	-	$N \times h/8 \times w/8 \times 128$
5×5 convolution	leaky ReLU	MSRA	-	$N \times h/8 \times w/8 \times 256$
$2 \times 2 \max$ pool	-	-	-	$N \times h/16 \times w/16 \times 256$
1×1 convolution	leaky ReLU	MSRA	-	$N \times h/16 \times w/16 \times 256$
global average pooling	-	-	-	$N \times 256$
fully connected	leaky ReLU	MSRA	-	$N \times 512$
fully connected	leaky ReLU	MSRA	-	$N \times 128$
fully connected	Softmax	MSRA	Class probabilities	$N \times 5$