
Supplementary Materials for: ”Content Authentication for Neural
Imaging Pipelines: End-to-end Optimization of Photo Provenance in

Complex Distribution Channels”

Pawe l Korus1,2 and Nasir Memon1

New York University1, AGH University of Science and Technology2

http://kt.agh.edu.pl/~korus

1. Source Code

To facilitate further research in this direction, and
enable reproduction of our results, our neural imaging
toolbox is available at https://github.com/pkorus/

neural-imaging.

2. Implementation Details

We implemented the entire acquisition and distri-
bution pipeline in Python 3 and Tensorflow v. 1.11.0.
In all experiments, we used the Adam optimizer with
default settings. We proceeded in the following stages:

1. Training and validation of the NIPs.

2. Validation of the FAN for manipulation detec-
tion with no distribution channel between post-
processing and forensic analysis.

3. Joint optimization of the FAN & NIP models with
active distribution channel.

The NIP models trained in stage (1) were then used in
(2) and (3) for NIP initialization to speed-up training.

2.1. NIP Architectures

We considered several NIP models with various lev-
els of complexity. The simplest INet model was hand-
crafted to replicate the standard imaging pipeline. The
architecture (Tab. 2) is a simple sequential concatena-
tion of convolutional layers. Each operation was ini-
tialized with meaningful values (see Tab. 2) which sig-
nificantly sped up convergence. (We also experimented
with random initialization, but this led to slower train-
ing and occasional problems with color fidelity.) The
last two layers were initialized with parameters from a
simple 2-layer network trained to approximate gamma
correction for a scalar input (4 hidden nodes + one
output node).

The UNet model (Tab. 3) was the most complex of
the considered models, but it delivered fairly quick con-
vergence due to skip connections [10]. We adapted the
implementation from a recent work by Chen et al. [4].
The configuration of skip connections is shown in detail
in Tab. 3. All convolutional layers produce tensors of
the same spatial dimensions, eliminating the need for
cropping.

We also experimented with two recent networks used
for joint demosaicing and denoising (DNet - Tab. 4) [7],
and for general-purpose image processing (CNet) [5].
Overall, the results were unsuccessful. The DNet
model was able to learn a high-fidelity photo devel-
opment process, but converged very slowly due to col-
orization and sharpness artifacts. The trained model
proved to be rather fragile, and quickly deteriorated
during joint NIP and FAN optimization1. We were un-
able to obtain satisfactory photo development using the
CNet model - the validation PSNR stopped improving
around 25-27 dB.

All models were trained to replicate the output of
a manually implemented imaging pipeline. (Detailed,
per-camera validation performance measurements are
shown in Tab. 1.) We used rawkit [3] wrappers over
libRAW [8]. Demosaicing was performed using an adap-
tive algorithm by Menon et al. [9] from the colour-

demosaicing package. We used learning rate of 10−4

and continued training until the average validation loss
for the last 5 epochs changes by more than 10−4.
The maximal number of epochs was set to 50,000.
Due to patch-based training, we did not perform any

1In more recent experiments with explicit regularization of
the impact of the NIP’s L2 loss, we were able to improve DNet ’s
performance. However, the model still remains more fragile and
reaching classification accuracy comparable to UNet leads to ex-
cessive artifacts. In addition to noise-like artifacts, the model
looses edge sharpness. With a visually acceptable distortion, the
model yielded accuracy between 70-80%. More detailed results
will be available in an extended version of this work.

i

http://kt.agh.edu.pl/~korus
https://github.com/pkorus/neural-imaging
https://github.com/pkorus/neural-imaging


Table 1. Detailed validation performance statistics for all
cameras and all NIPs.

Camera INet UNet DNet

PSNR1 SSIM PSNR1 SSIM PSNR1 SSIM

Canon EOS 40D 42.7 0.987 43.6 0.990 44.5 0.992
Canon EOS 5D 42.4 0.987 44.8 0.992 48.4 0.997
Nikon D5100 43.7 0.989 45.3 0.990 48.1 0.996
Nikon D700 44.7 0.993 45.6 0.994 47.2 0.997
Nikon D7000 42.3 0.989 44.4 0.992 44.9 0.994
Nikon D750 42.7 0.990 44.8 0.994 45.5 0.996
Nikon D810 39.6 0.984 41.9 0.991 43.6 0.995
Nikon D90 44.6 0.993 44.4 0.991 47.7 0.997
1 PSNR values in [dB]

global post-processing (e.g., histogram stretching). In
each epoch, we randomly selected patches from full-
resolution images, and fed them to the network in
batches of 20 examples. We used input examples of
size 64 × 64 × 4 (RGGB) which are developed into
128× 128× 3 (RGB) color patches. The final networks
can work on arbitrary inputs without any changes.
Fig. 1 shows an example full-resolution (12 Mpx) im-
age developed with the standard (ab) and the neural
pipelines (cde).

2.2. JPEG Codec Approximation

The architecture of the dJPEG model is shown in
Tab. 5. The network was hand-crafted to replicate the
operation of the standard JPEG codec with no chromi-
nance sub-sampling (the 4:4:4 mode). We used stan-
dard quantization matrices from the IJG codec [1]. See
the main body of the paper for approximation details.
The input to the network is an image batch, and should
be normalized to [0, 1].

2.3. The FAN Architecture

The FAN architecture (Tab. 6) is a fairly standard
CNN model with an additional constrained convolution
layer recommended for forensics applications [2]. In
contrast to the study by Bayar and Stamm, who used
only the green color channel, we take all color channels
(RGB). We also used larger patches for better statistics
- in all experiments, the input size is 128 × 128 px.

The network starts with a convolution layer con-
strained to learn a residual filter. We initialized the
layer with the following residual filter (padded with ze-
ros to 5 × 5): −1,−2,−1

−2, 12,−2
−1,−2,−1

 . (1)

We used leaky ReLUs instead of tanh for layer activa-
tion, and dispensed with batch normalization due to
small network size and fast convergence without it.

2.4. Training Details

In our implementation, we use two Adam optimiz-
ers (with default settings) for: (1) updating the FAN
(and in joint training also the NIP) based on the cross-
entropy loss; (2) updating the NIP based on the im-
age fidelity loss (L2). The optimization steps are run
in that order. To ensure comparable loss values, the
L2 loss was computed based on images normalized to
the standard range [0,255]. Analogously to standalone
NIP training, we feed raw image patches extracted from
full-resolution images. In each epoch, the patches are
chosen randomly, and fed in batches of 20. We start
with learning rate of 10−4 and decrease it by 15% every
50 epochs.

References

[1] Independent JPEG Group. http://www.ijg.org/. visited
18 Apr 2017. ii

[2] B. Bayar and M. Stamm. Constrained convolutional neural
networks: A new approach towards general purpose image
manipulation detection. IEEE Tran. Information Forensics
and Security, 13(11):2691–2706, 2018. ii

[3] P. Cameron and S. Whited. Rawkit. https://rawkit.

readthedocs.io/en/latest/. Visited Nov 2018. i
[4] C. Chen, Q. Chen, J. Xu, and V. Koltun. Learning to see

in the dark. arXiv, 2018. arXiv:1805.01934. i
[5] Q. Chen, J. Xu, and V. Koltun. Fast image pro-

cessing with fully-convolutional networks. arXiv, 2017.
arXiv:1709.00643v1. i

[6] D. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato.
RAISE - a raw images dataset for digital image forensics.
In Proc. of ACM Multimedia Systems, 2015. iii

[7] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand. Deep
joint demosaicking and denoising. ACM Tran. Graphics,
35(6):1–12, nov 2016. i

[8] LibRaw LLC. libRAW. https://www.libraw.org/. Visited
Nov 2018. i

[9] D. Menon, S. Andriani, and G. Calvagno. Demosaicing with
directional filtering and a posteriori decision. IEEE Tran.
Image Processing, 16(1):132–141, 2007. i

[10] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In Int.
Conf. Medical Image Computing and Computer-assisted In-
tervention. Springer, 2015. i

ii

http://www.ijg.org/
https://rawkit.readthedocs.io/en/latest/
https://rawkit.readthedocs.io/en/latest/
https://www.libraw.org/


(a) our implementation of the standard pipeline (b) libRAW with default settings

(c) developed by the INet model (d) developed by the UNet model

(e) developed by the DNet model

Figure 1. An example full-resolution (12.3 Mpx) image developed with standard pipelines (ab) and the considered NIPs (cde):
image r23beab04t from the Nikon D90 camera (Raise dataset [6]). The full-size images are included as JPEGs (quality 85,
4:2:0) to limit PDF size. Close-up patches are included as uncompressed PNG files.

iii



Table 2. The INet architecture: 321 trainable parameters

Operation Activation Initialization Function Output size

Input - - RGGB feature maps N × h
2
× w

2
× 4

1× 1 convolution - hand-crafted binary sample selection1 Reorganizes data for up-sampling N × h
2
× w

2
× 12

Depth to space - - Up-sampling N × h× w × 3
5× 5 convolution - zero-padded 3× 3 bilinear kernel Demosaicing N × h× w × 3
1× 1 convolution - sample color conversion matrix Color-space conversion (sRGB) N × h× w × 3
1× 1 convolution tanh pre-trained model Gamma correction2 N × h× w × 12
1× 1 convolution - pre-trained model Gamma correction2 N × h× w × 3
Clip to [0,1] - - output RGB image N × h× w × 3
1 we disabled optimization of this filter to speed up convergence
2 adapted from a 2-layer network trained separately to approximate gamma correction

Table 3. The UNet architecture: 7,760,268 trainable parameters

Operation Activation Input Output Output size

Input - - x N × h/2× w/2× 4
3× 3 convolution leaky ReLU x c1,1 N × h/2× w/2× 32
3× 3 convolution leaky ReLU c1,1 c1,2 N × h/2× w/2× 32
2× 2 max pooling - c1,2 p1 N × h/4× w/4× 32

3× 3 convolution leaky ReLU p1 c2,1 N × h/4× w/4× 64
3× 3 convolution leaky ReLU c2,1 c2,2 N × h/4× w/4× 64
2× 2 max pooling - c2,2 p2 N × h/8× w/8× 32

3× 3 convolution leaky ReLU p2 c3,1 N × h/8× w/8× 128
3× 3 convolution leaky ReLU c3,1 c3,2 N × h/8× w/8× 128
2× 2 max pooling - c3,2 p3 N × h/16× w/16× 128

3× 3 convolution leaky ReLU p3 c4,1 N × h/16× w/16× 256
3× 3 convolution leaky ReLU c4,1 c4,2 N × h/16× w/16× 256
2× 2 max pooling - c4,2 p4 N × h/32× w/32× 256

3× 3 convolution leaky ReLU p4 c5,1 N × h/32× w/32× 512
3× 3 convolution leaky ReLU c5,1 c5,2 N × h/32× w/32× 512
2× 2 strided convolution - c5,2 s5 N × h/16× w/16× 256

3× 3 convolution leaky ReLU s5 | c4,2 c6,1 N × h/16× w/16× 256
3× 3 convolution leaky ReLU c6,1 c6,2 N × h/16× w/16× 256
2× 2 strided convolution - c6,2 s6 N × h/8× w/8× 128

3× 3 convolution leaky ReLU s6 | c3,2 c7,1 N × h/8× w/8× 128
3× 3 convolution leaky ReLU c7,1 c7,2 N × h/8× w/8× 128
2× 2 strided convolution - c7,2 s7 N × h/4× w/4× 64

3× 3 convolution leaky ReLU s7 | c2,2 c8,1 N × h/4× w/4× 64
3× 3 convolution leaky ReLU c8,1 c8,2 N × h/4× w/4× 64
2× 2 strided convolution - c7,2 s8 N × h/2× w/2× 32

3× 3 convolution leaky ReLU s8 | c1,2 c9,1 N × h/2× w/2× 32
3× 3 convolution leaky ReLU c9,1 c9,2 N × h/2× w/2× 32
1× 1 convolution - c9,2 c10 N × h/2× w/2× 12

Depth to space - c10 yrgb N × h× w × 3
Clip to [0,1] - yrgb y N × h× w × 3

All leaky ReLUs have α = 0.2
| denotes concatenation along the feature dimension

iv



Table 4. The DNet architecture: 493,976 trainable parameters

Operation Activation Input Output Output size

Input - - c0 N × h/2× w/2× 4

Repeat for i = 1, 2, . . . , 14 {
3× 3 convolution + BN ReLU ci−1 ĉi N × h/2− 2× w/2− 2× 64
Padding (reflection) - ĉi ci N × h/2× w/2× 64

}

3× 3 convolution + BN ReLU c14 ĉ15 N × h/2− 2× w/2− 2× 12
Padding (reflection) - ĉ15 c15 N × h/2× w/2× 12

Depth to space - c15 fconv N × h× w × 3

1× 1 convolution - c0 c16 N × h/2× w/2× 12
Depth to space - c16 fbayer N × h× w × 3

3× 3 convolution ReLU fconv | fbayer ĉ17 N × h− 2× w − 2× 64
Padding (reflection) - ĉ17 c17 N × h× w × 64
1× 1 convolution - c17 yrgb N × h× w × 3
Clip to [0,1] - yrgb y N × h× w × 3

| denotes concatenation along the feature dimension

Table 5. The dJPEG architecture for JPEG codec approximation

Operation JPEG Function Output size

Input - N × h× w × 3
1× 1 convolution RGB → YCbCr N × h× w × 3
Space to depth & reshapes Isolate 8× 8 px blocks 3N × 8× 8×B
Transpose & reshape - 3BN × 8× 8
2 × matrix multiplication Forward 2D DCT 3BN × 8× 8
Element-wise matrix division Divide by quantization matrices 3BN × 8× 8
Rounding / approximate rounding Quantization 3BN × 8× 8
Element-wise matrix multiplication Multiply by quantization matrices 3BN × 8× 8
2 × matrix multiplication Inverse 2D DCT 3BN × 8× 8
Transpose & reshape - 3N × 8× 8×B
Depth to space & reshapes Re-assemble 8× 8 px blocks N × h× w × 3
1× 1 convolution YCbCr → RGB N × h× w × 3

Table 6. The FAN architecture: 1,341,990 trainable parameters

Operation Activation Initialization Comment Output size

Input - - RGB input N × h× w × 3
5× 5 convolution - Standard residual filter1 Constrained convolution N × h× w × 3

5× 5 convolution leaky ReLU MSRA - N × h× w × 32
2× 2 max pool - - - N × h/2× w/2× 32
5× 5 convolution leaky ReLU MSRA - N × h/2× w/2× 64
2× 2 max pool - - - N × h/4× w/4× 64
5× 5 convolution leaky ReLU MSRA - N × h/4× w/4× 128
2× 2 max pool - - - N × h/8× w/8× 128
5× 5 convolution leaky ReLU MSRA - N × h/8× w/8× 256
2× 2 max pool - - - N × h/16× w/16× 256

1× 1 convolution leaky ReLU MSRA - N × h/16× w/16× 256

global average pooling - - - N × 256
fully connected leaky ReLU MSRA - N × 512
fully connected leaky ReLU MSRA - N × 128
fully connected Softmax MSRA Class probabilities N × 5

v


