
Noise2Void - Learning Denoising from Single Noisy Images
Supplementary Note

Alexander Krull1,2, Tim-Oliver Buchholz2, Florian Jug
1 krull@mpi-cbg.de

2 Authors contributed equally

MPI-CBG/PKS (CSBD), Dresden, Germany

This supplementary note provides additional information on
NOISE2VOID and on the experiments we conducted. We will
first discuss details on our training, validation and and data
preparation procedure (Section 1) and then continue to provide
the size of our networks’ receptive fields (Section 2). Finally,
we will provide additional results achieved by multiple varia-
tions of our method (Section 3).

In Supplementary Figures 1, 2, 3, and 4 we will show addi-
tional qualitative results.

1 Training, Validation and Data Prepa-
ration

We train all networks for 200 cycles, with each cycle consisting
of 400 gradient steps. During the training of all networks we
perform on-the-fly random sub-patch extraction (with a size of
64× 64) from our previously prepared training data.

The validation loss, which is used by the CARE learning
rate scheduler, is calculated like the training loss for traditional
training, N2N, and N2V respectively. Using the ground truth
for traditional training, and a second noisy image for N2N. For
N2V, we calculate the validation loss using randomly selected
masked pixels, like it is done for the training loss.

We will now go on to describe the training data preparation
of the individual datasets and provide additional details.

1.1 BSD68 [2]
As in [4], we train our network using the 400 gray scale im-
ages with 180×180 pixels. We add zero centered independent
Gaussian noise (σ = 25) to all patches. Then we randomly
select 1% of all patches to serve as validation dataset. Finally,
we augment our data by adding all rotated (multiples of 90◦)
and mirrored versions. During training with N2V, we use the
Uniform Pixel Selection UPS masking method with a 5 × 5
pixel window (see Section 3.1).

1.2 Simulated Microscopy
In the simulation of our microscopy data, we start out with
three independently generated 3D phantom image stacks (size:
256× 256× 256) that describe the fluorophore distribution in
our sample. We use two of the phantoms to generate train-
ing data and one to generate test data. We start the microscope

simulation by normalizing the phantoms to the range [0, 1]. We
than add a constant value of 0.2 to simulate background illu-
mination and multiply the phantoms by a factor λ to account
for the exposure. Subsequently we simulate shot noise. Every
pixel value is generated by drawing from a Poisson distribution
using the shifted and scaled phantom as the expected value of
the pixel. Finally, we add pixel-wise independent zero-mean
Gaussian noise with a standard deviation of σ = 1 to simulate
readout noise in the sensor. According to the above scheme,
we generate low- and high-exposure-images, using λ = 20
and λ = 10000 respectively. A second low-exposure-image
(λ = 20) is generated for N2N training. The high-exposure-
images serve as ground truth for the traditional training and
are used to calculate the PSNR during testing. With respect
to the latter, we account for different exposure rates by scal-
ing our network output with the corresponding factor. Since
N2V is currently only implemented in 2D, we view each of
the generated 3D image stacks as collection of 2D images and
process them independently. We use 10% of out training im-
ages as validation dataset. During training with N2V, we use
the Gaussian Pixel Selection (GPS) masking method (see Sec-
tion 3.1).

1.3 Fluo-C2DL-MSC (CTC-MSC) [3]
We train our network using the two training movies provided
in the cell tracking challenge1. We use only the image data
without any additional annotations like ground truth segmen-
tations. This is the same data we use for testing as well. We
iterate over all frames of both movies and randomly extract
patches of 80 × 80 pixels. To reduce the amount of patches
showing only background we calculate the standard deviation
of the intensities of each patch. We exclude all patches with
standard deviation below 1250. For each frame we continue
to sample until we find 256 patches that pass this test. We use
one of these patches from every frame in our validation set. We
augment our data by adding all rotated (multiples of 90◦) and
mirrored versions. During training with N2V, we use the UPS
masking method with a 5× 5 pixel window (see Section 3.1).

1http://celltrackingchallenge.net/

1



1.4 Fluo-N2DH-GOWT1 (CTC-N2DH) [3]
The Fluo-N2DH-GOWT1 training dataset also consists of two
movies. Again we use only the image data without any ad-
ditional annotations like ground truth segmentations. This is
again the same data we use for testing as well. The data prepa-
ration is done as for the CTC-MSC dataset. However, here we
exclude all patches with standard deviation below 5. During
training with N2V, we use the UPS masking method with a
5× 5 pixel window (see Section 3.1).

1.5 Cryo-TEM [1]
We use a single 7676× 7420 pixel cryo-TEM image as source
for our training data and extract 435 overlapping patches of
size 512 × 512. The same image is later used for testing. We
randomly select 10% of the patches and use them as valida-
tion dataset. Here, we do not use data augmentation in the
form of flipping or rotating. During training with N2V, we
use the UPS masking method with a 5 × 5 pixel window (see
Section 3.1).

2 Receptive Fields of our Networks
We used the CARE framework to calculate the size of our net-
works’ receptive fields: A CARE network with kernel size of
3 × 3 and depth 2 has a receptive field of 22 × 22 pixels. A
network with kernel size of 5 × 5 has a receptive field of size
40× 40.

3 Variations of N2V and Parameters
We used the BSD68 dataset to test different parameter settings
and to try different variants of our masking scheme. The results
can be found in Supplementary Table 1.

3.1 Masking Methods
We tried the following variants of our masking scheme: Uni-
form Pixel Selection (UPS) replaces the value of the selected
pixel iwith a randomly selected pixel value from a square win-
dow around i. This includes the pixel itself. In Supplementary
Table 1 we write the size of the window in parenthesis.
Gaussian (G) masking changes the value of the selected pixel
i by adding random Gaussian noise. In Supplementary Table 1
we provide the standard deviation of the noise in parenthesis.
The Gaussian Fitting (GF) method looks at a local square
neighborhood of the pixel i and fits a 1D Gaussian distribution
to the pixel values by calculating mean and standard deviation.
The pixel i is included in this calculation. The pixel value is
masked by drawing from the fitted Gaussian distribution. In
Supplementary Table 1 we write the size of the neighborhood
in parenthesis.
The Gaussian Pixel Selection (GPS) replaces the value of the
selected pixel i with a randomly selected pixel that is found by

Masking Types
Masking Kernel Loss Features PSNR
UPS (3×3) 3×3 MSE 96 26.98
UPS (5×5) 3×3 MSE 96 27.71
UPS (7×7) 3×3 MSE 96 27.26
UPS (50×50) 3×3 MSE 96 27.42
GF (3×3) 3×3 MSE 96 27.51
GF (5×5) 3×3 MSE 96 27.31
GF (7×7) 3×3 MSE 96 27.47
GF (50×50) 3×3 MSE 96 27.35
G (5) 3×3 MSE 96 27.24
G (10) 3×3 MSE 96 26.52
GPS 3×3 MSE 96 27.31

Other Parameters
Masking Kernel Loss Features PSNR
UPS (5×5) 5×5 MSE 96 27.60
UPS (5×5) 3×3 MAE 96 27.58
UPS (5×5) 5×5 MAE 96 26.99
UPS (5×5) 3×3 MAE 32 27.33
UPS (5×5) 5×5 MAE 32 27.36

Table 1: Results achieved with various masking methods and
different parameter settings on the BSD68 dataset.

drawing from a 2D isotropic Gaussian distribution centered at
pixel i. The pixel i itself is excluded from this draw. That is,
if the pixel i is selected by the Gaussian draw, we redraw until
another pixel has been selected. We use a Gaussian distribution
with a standard deviation of σ = 4.

3.2 Other Parameters
In addition to the masking method, we also experimented with
other parameters. In particular, we tried using the mean ab-
solute error (MAE) as our loss function instead of the mean
square error (MSE). We also varied the number of feature
channels used in the first layer, denoted as Features in Sup-
plementary Table 1, and the size of the convolutional kernels
used in the network, denoted as Kernel.

References
[1] T.-O. Buchholz, M. Jordan, G. Pigino, and F. Jug. Cryo-care:

Content-aware image restoration for cryo-transmission electron
microscopy data. arXiv preprint arXiv:1810.05420, 2018. 2

[2] S. Roth and M. J. Black. Fields of experts. International Journal
of Computer Vision, 82(2):205, 2009. 1

[3] V. Ulman, M. Maška, K. E. Magnusson, O. Ronneberger,
C. Haubold, N. Harder, P. Matula, P. Matula, D. Svoboda,
M. Radojevic, et al. An objective comparison of cell-tracking
algorithms. Nature methods, 14(12):1141, 2017. 1

[4] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a
gaussian denoiser: Residual learning of deep cnn for image de-
noising. IEEE Transactions on Image Processing, 26(7):3142–
3155, 2017. 1

2



Ground Truth Input NOISE2VOID

Figure 1: Qualitative NOISE2VOID results on the BSD68 dataset.

3



Input NOISE2VOID

Figure 2: Qualitative NOISE2VOID results from the cryo-TEM dataset.

4



Input NOISE2VOID

Figure 3: Qualitative NOISE2VOID results from the CTC-MSC Dataset.

5



Input NOISE2VOID

Figure 4: Qualitative NOISE2VOID results from the CTC-N2DH dataset.

6


