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Abstract

This document provides mathematical derivation to the
objective function proposed in the main paper [2]. Addi-
tionally, we provide some more qualitative results and sta-
tistical evaluations of our algorithm. Lastly, we made a
brief comment on the challenges associated with handling
temporal grassmannians for NRSfM problem.

1. Mathematical derivation to the optimization
of the objective function

In this section, we provide mathematical derivation of
the following optimization proposed in the paper. Some of
the derivations are similar to the Kumar et al. work [4, 5, 7]

minimize
Z,C̃,S,S]

1

2
‖W− RS‖2F + β1‖χ− χC̃‖2F + β2‖S]‖∗+

ρ

2
‖S] − f(S)‖2F+ < L1, S

] − f(S) > +β3‖Z‖∗+

ρ

2
‖C̃− Z‖2F+ < L2, C̃− Z >

subject to: ξ = fg(P, S), ξ̃ = fh(∆, ξ),

S = fs(ξ,Σ, ξv),P = fp(ξ̃, C̃,Po)
(1)

The constraints in the Eq:(1) are invoked over iteration.
The solution to each sub-problem is obtained by taking the
derivative of the above ALM form w.r.t the concerned vari-
able and equating it to zero.

1.1. Solution to ‘S’

≡ argmin
S

1

2
‖W− RS‖2F +

ρ

2
‖S] − f(S)‖2F+

< L1, S
] − f(S) >

≡ argmin
S

1

2
‖W− RS‖2F +

ρ

2
‖S−

(
f−1(S]) +

f−1(L1)

ρ

)
‖2F

(2)

Taking the derivative of the above equation w.r.t ‘S’ and
equating it to zero gives

(RTR + ρI)S = RTW + ρ
(
f−1(S]) +

f−1(L1)

ρ

)
(3)

We used MATLAB mldivide() function to solve it during
our implementation. You may use any linear algebra pack-
age to solve the above well known form.

1.2. Solution to ‘S]’

Similar to previous derivation, we can write the ALM
form for the variable S]

≡ argmin
S]

β2‖S]‖∗ +
ρ

2
‖S] − f(S)‖2F+ < L1, S

] − f(S) >

≡ argmin
S]

β2‖S]‖∗ +
ρ

2
‖S] −

(
f(S)− L1

ρ

)
‖2F

(4)
The above sub-problem is well-known form for nuclear
norm minimization. By defining the soft-thresholding op-
erator Sτ (v) = sign(v)max(|v| − τ), the solution of S] can
be obtained by

S] = UsS β2
ρ

(Σs)Vs (5)

where, [Us,Σs, Vs] = svd
(
f(S)− L1

ρ

)
1.3. Solution to ‘Z’

≡ argmin
Z

β3‖Z‖∗ +
ρ

2
‖C̃− Z‖2F+ < L2, C̃− Z >

≡ argmin
Z

β3‖Z‖∗ +
ρ

2
‖Z−

(
C̃ +

L2

ρ

)
‖2F

(6)

Using the soft-thresholding function as mentioned before,
the solution to Z is given by

Z ≡ UzS β3
ρ

(Σz)Vz (7)

where [Uz,Σz, Vz] = svd
(
C̃ + L2

ρ

)



1.4. Solution to ‘C̃’

Deriving the solution for ‘C̃’ from the sub-problem in-
volving the variable ‘C̃’ is not straight forward rather, it’s
a bit involved and therefore, we first derive an equivalent
form for the error term that involves tensor χ. The equiva-
lent form is easy to handle and program on computers. Lets
consider the following error term:

‖χ− χC̃‖2F (8)

Using the notation from our paper, for any ith Grassmann
point this error term in Eq:(8) can be written as

Tr

((
(ΘiΘ

T
i)−

K∑
j=1

cij(ΘjΘ
T
j)
)T(

(ΘiΘ
T
i)−

K∑
j=1

cij(ΘjΘ
T
j)
))
(9)

Expanding the above form gives

≡ Tr
(
(ΘiΘ

T
i)

T(ΘiΘ
T
i)
)
− 2

K∑
j=1

cijTr
(
(ΘiΘ

T
i)

T(ΘjΘ
T
j)
)
+

K∑
l=1

K∑
m=1

cilcimTr
(
(ΘlΘ

T
l)

T(ΘmΘ
T
m)
)

(10)
From our definition Θ ∈ Rd̃×p as an orthonormal matrix. Using it
simplifies the above equation to:

≡ d̃− 2

K∑
j=1

cijΓij +

K∑
l=1

K∑
m=1

cilcimΓlm

where, Γij = Tr
(
(ΘT

jΘi)(Θ
T
iΘj)

)
{using trace cyclic property}

(11)
Let Γ = (Γij)

K
ij=1 ∈ RK×K. Its easy to verify that Γ is symmetric

positive semi-definite. Therefore, using cholesky factorization of
chol(Γ) = LLT, we can re-write the above equation as

≡ d̃− 2Tr(C̃LLT) + Tr(C̃LLTC̃T)

≡ const + ‖L− LC̃‖2F
where, const. means constant w.r.t C̃

(12)

By substituting the result from Eq:(12) to the sub-problem w.r.t
C̃, we get the following form:

≡ argmin
C̃

β1‖L− LC̃‖2F +
ρ

2
‖C̃− Z‖2F+ < L2, C̃− Z >

≡ argmin
C̃

β1‖L− LC̃‖2F +
ρ

2
‖C̃−

(
Z− L2

ρ

)
‖2F

(13)

Taking the derivative of the Eq:(13) w.r.t C̃ and equating it to zero.

(2β1LL
T + ρI)C̃ = 2β1LL

T + ρ
(
Z− L2

ρ

)
(14)

2. Solution to E(∆)

E(∆) ≡ minimize
∆

K∑
(i,j)

wij
1

2
‖∆T(Λij)∆‖2F

subject to:

Tr
(

∆T
( K∑
i=1

λiiΩiΩ
T
i

)
∆
)

= 1

(15)

The optimization equation proposed for E(∆) is a well-studied op-
timization form and Riemann Conjugate gradient toolbox can be
employed to achieve the solution. Nevertheless, we can also de-
rive augmented lagrangian form to solve the same problem. By
letting X =

(∑K

i=1 λiiΩiΩ
T
i

)
and expanding the Frobenius norm

term, we can re-write the equation as:

E(∆) ≡ minimize
∆

K∑
(i,j)

wij

2
Tr
(
∆TΛij∆∆TΛij∆

)
E(∆) ≡ minimize

∆
Tr
(

∆T
K∑

(i,j)

wij

2
Λij∆

t−1∆(t−1)T Λij∆
)

subject to:

Tr
(

∆T
X∆
)

= 1

(16)
Here, t − 1 refers to its known value before the current iteration.
Now, by assuming Y =

wij

2
Λij∆

t−1∆(t−1)T Λij, the above equa-
tion simplifies to standard eigen value decomposition problem i.e.

E(∆) ≡ minimize
∆

Tr(∆T
Y∆)

subject to:

Tr
(

∆T
X∆
)

= 1

(17)

The equivalent Lagrangian function form is given by

Tr(∆T
Y∆) + λ

(
1− Tr

(
∆T

X∆
))

(18)

The Eq:(18) is of the standard form to generalized eigen value
problem. You may use any standard linear algebra package to
solve it.

3. More Results and Analysis
We provide some more qualitative results on Garg et al. bench-

mark dataset [1]. Figure (1) and Figure (2) show the 3D recon-
struction results of our algorithm on real face and synthetic face
sequence. Next, we provide one more statistical analysis of the
our algorithm.

1. Dependence of the algorithm on variable d̃: While
reducing the dimension for grouping the grassmann points, one
of the critical aspect is to determine the dimension to which we
should project for better results. We used well-known procedure
of cumulative energy of eigen vectors to get the value of d̃. Math-
ematically, let Ω be the set that stack all the Grassmannians and σi



Figure 1: 3D reconstruction results on real face sequence [1]

(a) Reconstructed Shape

(b) Ground-Truth Shape

Figure 2: 3D reconstruction results on synthetic face sequence
[1].

be the ith singular value of ΩΩT, then

d̃ = argmin
dopt

∑dopt
i=1 σi∑d

i=1 σi
≥ τ (19)

where τ can vary from 0 to 1 and dopt (optimal dimension) is a
positive integer. We put τ = 0.97 for all our experiment. Figure
(3) show the variations in the reconstruction error with the value
of τ . It is observed that for different dataset the value of suitable
d̃ is different. The point to note is that if the reduced dimension is
less than the intrinsic dimension, the samples may lose important
information for better grouping of Grassmannians.

3.1. Why we opt not to distrub the temporal conti-
nuity for this problem?

Although clustering of frames into smaller groups (Grassman-
nians) allows simpler model and be handy if prior informations
about shapes/activities are available. However, its quite possi-
ble that there will be repeat of certain activities or expression
in the video sequence (say facial expression). In such cases the
Grassmannians at frame ‘f’ and frame ‘f+n’ will be assigned to
same group (‘n’ is the time instant at which activities repeat or
is similar). As a result, such representation procedure may dis-
turb the overall time continuity of the sequence. Also, these group
of frames may form high-dimensional grassmannians, in order to
project it into low-dimension using neighboring Grassmannians
will get extremely difficult, for example, how to decide neighbor-
ing grassmannians using temporal grassmann samples?. On the

Figure 3: Accuracy variation with respect to τ .

other hand, grouping of trajectories (spatial) does not disturb the
temporal continuity of the trajectory and we can easily define the
neighbors using spatial information i.e., spatial neighbors tend to
be neighbors throughout the sequence, for a single deforming ob-
ject (unless breaks or disassociate, which is very rare). But in
shape space, we don’t have any prior knowledge to define neigh-
boring relation.

3.2. What is gained with the added extra complexity
in the algorithm (Ablation Test)?

By adding Eq:(7) we can have more discriminative Grassman-
nian representation which is useful in practice. The performance
on noisy sequence clearly demonstrates this. Also, by adding this
local representation constraint we have better control over local
shapes with very minimal increment in the processing time.

Data WO NC
(Noiseless)

WO NC
(Noise5%)

W NC
(Noiseless)

W NC
(Noise5%)

Seq.1 0.1083 0.1592 0.0404 0.0482
Seq.2 0.0972 0.1491 0.0392 0.0429
Seq.3 0.0913 0.1354 0.0280 0.0365
Seq.4 0.0924 0.1433 0.0327 0.0402

Table 1: Ablation test showing the (e3D) comparison on dense
synthetic face sequence. WO NC means WithOut Neighboring
Constraint and W NC means With Neighboring Constraints.

3.3. Mean processing time per frame?
The mean processing time per frame is 10.57743s in compari-

son to [4] which is 9.53093s.

3.4. What we gained over [4]?
Temporal clustering does help improve reconstruction accu-

racy as shown in [4] but [4] algorithm does it by assuming that
they know how many frames to select to represent a local temporal
Grassmannian. Now such information is not available in practice.
Our new algorithm show that without such temporal knowledge
we can have an equivalent or better performance by using a better



representation of the grassmannians. This can be verified using the
reconstruction accuracy table in the main paper.
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