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1. Collaborative training
This section describes the experiments that further ana-

lyze the importance of multi-inputs by providing additional
qualitative results.

1.1. Effects of input dropout

The input of the proposed method is much more infor-
mative than StarGAN [1]. In other words, there might exist
some wasted inputs since there is some redundancy of the
inputs. For example on RaFD [4], if ‘Happy’ image plays a
major role for reconstructing ‘Angry’ images, the other fa-
cial expressions may contribute little on the output, which
is not collaborative. To achieve the collaborative learning,
it is imporatant to use random nulling on the inputs (control
of the number of missing imputs). Thus, the random nulling
of the input images helps to increase the contribution of
the other facial expressions evenly. It could be treated as
a dropout [7] layer on the input images. The contribution of
the input dropout is as shown in Fig. 1. The input dropout
increases the performance of the reconstruction quality for
all ‘Missing N ’ since the inputs contribute more evenly to
the reconstruction.

1.2. Incompelete input datasets

To investigate the effects of the number of inputs, we
compared the reconstruction results with the control of the
missing number of inputs. Figure. 2 shows the reconstruc-
tion results ‘Happy’ and ‘Angry’ using the inputs with dif-
ferent missing values from seven to one. As the amount of
input information increased, the reconstruction results im-
proved qualitatively as shown in Fig. 2.

2. Implementation Details
2.1. Details of MR acquisition parameter

Among the four different contrasts, three of them were
synthetically generated from the MAGiC sequence (T1F,

T2w and T2F) and the other was additionally scanned by
conventional T2-FLAIR sequence (T2F*). The MR acqui-
sition parameters are shown in Table. 1.

TR(ms) TE(ms) TI(ms) FA(deg)
T1F 2500 10 1050 90
T2w 3500 128 - 90
T2F 9000 95 2408 90
T2F* 9000 93 2471 160
Common
parameters

FOV:220×220mm, 320×224 matrix,
4.0 mm thickness

Table 1: MR acquisition parameters for each contrast.
T1F, T2w, T2F and T2F* represent MAGiC synthetic T1-
FLAIR, MAGiC synthetic T2-weighted, MAGiC synthetic
T2-FLAIR and conventional T2-FLAIR, respectively. Four
contrasts share the field of view (FOV), acquisition matrix,
and slice thickness as shown in the common parameters
row.

2.2. Network Implementation

The proposed method consists of two networks, the gen-
erator and the discriminator. There are three tasks (MR
contrasts imputation, illumination imputation and facial ex-
pression imputation) and each task has its own property.
Therefore, we redesigned the generators and discriminator
for each tasks to achieve the best performance for each task
while the general network architecture are similar.
MR contrast translation Instead of using single convolu-
tion, the generator uses two convolution branches with 1x1
and 3x3 filters to handle the multi-scale feature information.
The two branches of the convolutions are concatenated sim-
ilar to the inception network [8]. We called this series of two
convolution, concatenation, instance normalization [9] and
leaky-ReLU [2], CCNR unit, as shown in Table. 2. These
CCNR units help the pixel-by-pixel processing of the CNN
as well as the processing with a large FOV. The architecture
of the generator describes in Table. 2 and Fig. 3.
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Figure 1: Facial expression imputation results changing the missing number of input images from seven to one. ‘Sad’ (up)
and ‘Contemptuous’ (down) facial expressions were reconstructed using various number of inputs. Each 1st row was the
results trained by input dropout and the other was not. Each column represents the results from the incomplete input set
which has ‘Missing N ’ inputs. To impute each facial expression, other (8-N ) facial expressions were collaboratively used as
inputs.

Figure 2: Facial expression imputation results changing the missing number of input images from seven to one. ‘Neutral’ (1st
row) and ‘Angry’ (2nd row) facial expressions were reconstructed using various number of inputs. Each column represents
the results from the incomplete input set which has ‘Missing N ’ inputs. To impute each facial expression, other (8-N )
facial expressions were collaboratively used as inputs. More information was used to the right column and the quality of the
reconstruction improved. The numbers below the images, (Nin → Nout), explain the number of input images and output
images, respectively.



Unit Layers nCh

Main CCNL×2 (skip) Cat CCNL×2 C’ 16(Blck#1)

Blck#1 P CCNL×2 (skip) Cat CCNL×2 T 32(Blck#2)

Blck#2 P CCNL×2 (skip) Cat CCNL×2 T 64(Blck#3)

Blck#3 P CCNL×2 (skip) Cat CCNL×2 T 128(Blck#4)

Blck#4 P CCNL×2 T 256

CCNL Conv(k1,s1) Cat-InstanceNorm-LeakyReLUConv(k3,s1)

Table 2: Architecture of the generator used for MR contrast
translation. The U-net [6] structure was redesigned with
the proposed CCNR units which includes instance normal-
ization (N) and leaky-ReLU (L). Conv, P, Cat and T repre-
sent convolution, average pooling with strides 2, concate-
nate, and convolution transpose with strides 2 and kernel
size 2×2, respectively. While k and s refer to the kernel size
and the stride, C’ is 1×1 convolution layer, Conv(k1,s1).

To classify the MR contrast, multi-scale (multi-
resolution) processing is important. The discriminator has
three branches that each has different scales as shown in
Table. 3. A branch handles the feature on the original res-
olution. Another branch process the features on the quater-
resolution scales (height/4, width/4). The other one se-
quentially reduces the scales for extract features. Three
branches are concatenated to process multi-scale features.
Similar architecture with this kind of multi-scale approach
works well to classify the MR contrast [5].

Order Layers k
1a C(n4,s1)-L C(n4,s1)-L C(n4,s1)-L C(n4,s1)-L C(n16,s4)-L 4
1b C(n4,s1)-L C(n8,s2)-L C(n8,s1)-L C(n16,s2)-L C(n16,s1)-L 4
1c C(n16,s4)-L C(n16,s1)-L C(n16,s1)-L C(n16,s1)-L C(n16,s1)-L 4

2
1a

Cat C(n32,s2)-L C(n64,s2)-L C(n128,s2)-L 41b
1c

3a C(n1,s1) Sigmoid (Dgan) 3
3b FC(n4) Softmax (Dcls) 8

Table 3: Architecture of the descriminator used for MR con-
trast translation. k is the kernel size for the convolution and
C(n,s) represents the convolution layer with n channels and
s strides. Cat, L and FC represent the concatenate layer,
the leaky-ReLU layer and the fully-connected layer, respec-
tively.

Illumination translation Architecture of the generator
used for illumination translation. It is similar to original
U-net structure with instance normalization (N) and leaky-
ReLU (L) instead of batch normalization and ReLU, respec-
tively, as shown in Table. 4 and Fig. 4.

The discriminator is consists of convolutions with strides
2 and instance normalization. At the end of the dis-
criminator, there are two branch [1]: one for discriminat-

Unit Layers nCh

Main - CNL×2 (skip) Cat CNL×2 C’ 64(Blck#1)

Blck#1 P CNL×2 (skip) Cat CNL×2 T 128(Blck#2)

Blck#2 P CNL×2 (skip) Cat CNL×2 T 256(Blck#3)

Blck#3 P CNL×2 (skip) Cat CNL×2 T 512(Blck#4)
Blck#4 P CNL×2 T 1024

CNL Conv(k3,s1) Cat-InstanceNorm-LeakyReLU

Table 4: Architecture of the generator used for illumination
translation. Conv, P, Cat and T represent convolution, av-
erage pooling with strides 2, concatenate, and convolution
transpose with strides 2 and kernel size 2×2, respectively.
k and s refer to the kernel size and the stride. C’ is 1×1
convolution layer, Conv(k1,s1).

ing real/fake and the other for the domain classification.
Here, patchGAN [3, 10] was utilized to classify the source
(real/fake).

Order Layers
1 C(n64,k4,s2)-L
2 C(n128,k4,s2)-L
3 C(n256,k4,s2)-L
4 C(n512,k4,s2)-L
5 C(n1024,k4,s2)-L
6 C(n2048,k4,s2)-L
7a C(n1,k3,s1)-Sigmoid (Dgan)
7b FC(n5)-Softmax (Dcls)

Table 5: Architecture of the generator used for facial ex-
pression translation.

Facial expression translation For the generator of facial
expression translation, we designed a multi-branched U-net
which has individual encoder for each input images (Fig. 5).
The default architecture is based on U-net structure. The
generator consists of two part: encoder and decoder. In the
encoding step, each image are encoded separately by eight
branches. Here, the mask vector is concatenated to every
input images to extract the feature for the target domain.
Then, the encoded features are concatenated in the decoder
and the decoder shares the structure of the modified U-net
as explained in Table. 4. The discriminator shares the ar-
chitecture with the one used for the illumination translation
task (Table. 5) except fot the last fully-connected layer has
eight channels for eigth facial expression classification.

3. Additional evaluation results
Quantitative evaluation: The results of the facial expres-
sion and illumination need to be evaluated based on the re-
alistic image quality and the classification performance by



the domain classifier. In the following, however, quantita-
tive evaluation for facial expression and illumination impu-
tation is provided in the form of a table in terms of NMSE
(normalized mean squared error) and SSIM (structural sim-
ilarity index).

Additionally, we also presented the results of pix2pix [3]
which is a single-pair supervised method, to understand
whether the proposed multiple cycle consistency losses ac-
tually allow for even better performance.

pix2pix CycleGAN StarGAN Proposed

A 0.0247 0.0301 0.0306 0.0197
0.765 0.732 0.698 0.794

C 0.0283 0.0327 0.0421 0.0105
0.724 0.0700 0.696 0.840

D 0.0333 0.0362 0.0397 0.0172
0.716 0.694 0.683 0.802

F 0.0395 0.0329 0.0487 0.0213
0.677 0.685 0.670 0.761

H 0.0345 0.0350 0.0420 0.0211
0.697 0.682 0.606 0.778

S 0.0335 0.0268 0.0363 0.0122
0.697 0.729 0.692 0.803

Sad 0.0349 0.0352 0.0395 0.0204
0.679 0.6975 0.652 0.776

Table 6: Quantitative results for facial expression imputa-
tion. The NMSE/SSIM (lower/upper part for each facial
expression, respectively) are calculated from each target
domain (A:angry, C:contemptuous, D:disgusted, F:fearful,
H:happy, S:surprised, Sad:sad).

pix2pix CycleGAN StarGAN Proposed

−90◦ 0.0334 0.0777 0.0545 0.0122
0.799 0.640 0.606 0.876

−45◦ 0.0181 0.0656 0.0470 0.00873
0.840 0.688 0.644 0.888

45◦
0.0151 0.0188 0.0178 0.0150
0.607 0.734 0.698 0.800

90◦
0.0680 0.0868 0.0481 0.00839
0.708 0.665 0.668 0.894

Table 7: Quantitative results for illumination imputation.
The NMSE/SSIM (upper/lower part for each row, respec-
tively) are calculated from the target domain.

Table 6 & 7 show the additional quantitative evaluation
result showing that CollaGAN is better compared to the
other algorithms. Here, pix2pix[3], which directly imposes
the loss between the generator output and the target data,
was also used for the comparison. While pix2pix[3] shows
better reconstruction performance compared to CycleGAN

and StarGAN, the proposed method shows the best perfor-
mance as shown in Table 6 & 7 even for paired dataset.
Additional qualitative evaluation : We performed an ad-
ditional quality assessment by Mechanical Turk experiment
for more elaborate qualitative evaluation on the reconstruc-
tion results (Table. 8). We asked 30 participants to select
the best image according to the image quality and how well
the result represents the facial expression of the target do-
main. 70.8% of the reconstruction results from CollaGAN
was chosen as the best reconstruction.

Chosen as
the best

pix2pix CycleGAN StarGAN Proposed
3.8% 17.9% 7.4% 70.8%

Table 8: Qualitative evaluation results using Mechanical
Turk experiment. We asked the participants to choose the
best image according to the quality of reconstruction image,
the similarity to the ground truth, and how well the original
facial expression is expressed. Total 1470 answers from 30
participants.

4. Ablation study
To verify the advantage of the proposed multiple-cycle con-
sistency (MCC) loss and SSIM loss, ablation studies were
performed using RaFD dataset, and the results are presented
in Table 9.

(Mean±std) l1 w/o LMCC w/o LSSIM Proposed
NMSE 0.0372±0.00653 0.0200±0.00391 0.0178±0.00419
SSIM 0.714±0.0211 0.779±0.0243 0.793±0.0237

Table 9: Quantitative results for the ablation study.

When multiple cycle consistency loss was replaced with
l1 loss (i.e. direct regression from multiple inputs to
the single target), the results showed inferior performance
compared to the proposed method. Also, we found that
LSSIM improved the reconstruction performance in terms
of NMSE and SSIM (Table 9).



Figure 3: Architecture of the generator used for MR contrast imputation. It is the modified U-net architecture with CCBR
unit which consists of two branches of convolution (3×3 and 1×1), concatenation, instance normalizatoin and leaky-ReLU.
The input images were concatenated with mask vector which represents the target domain. The downward arrows, upward
arrows, right arrows and dashed arrows represent 2×2 average pooling, 2×2 convolution transpose, two repetition of CCNL
unit and skip connection with concatenation, respectively, as explained in Table. 2

Figure 4: Architecture of the generator used for illumination imputation. U-net structure with instance normalization and
leaky-ReLU was used. The input images were concatenated with mask vector which represents the target domain. The
downward arrows, upward arrows, right arrows and dashed arrows represent 2×2 average pooling, 2×2 convolution trans-
pose, two repetition of [3x3 convolution, instance normalization and leaky-ReLU], and skip connection with concatenation,
respectively, as explained in Table. 4



Figure 5: Architecture of the generator used for facial expression translation. It has multi-branched encoder for individual
feature extraction of each input images. The encoded features are concatenated in the decoder and the decoder structure shares
with the discriminator used for the illumination translation. (h × w)×Nch represents the dimension of the features/images
where h, w and Nch is height, width and number of channels. The dashed arrow means skip connections. The downward,
upward and right arrows represent [CNL×2-P] layers, [T-CNL×2] layers and [CNL×2] layers, respectively, as explained in
Table. 4



4.1. Additional Qualitative Results

Figure 6: Additional results for facial expression imputation. To impute each facial expression, the other seven facial expres-
sions were collaboratively used as inputs.



Figure 7: Additional results for facial expression imputation from incomplete input sets. Each column represents the results
from the incomplete input set which has ‘Missing N ’ inputs. To impute each facial expression, other (8-N) facial expressions
were collaboratively used as inputs. More information was used to the right column.
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