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S-1. Implementation Details

Network configuration: DenseNet-BC [23], excluding the
last dense block, is used as the encoder, which consists of
one convolution layer, one max pooling layer, and three
pairs of dense block and transition layer. The last dense
block in DenseNet-BC is employed in the ten decoders in
decoder part.

Each dense block is determined with hyper-parameters,
such as the number n of composite functions and the growth
rate k. Table S-1 lists these hyper-parameters in this work.
Since each transition layer halves the feature map resolution
and channels, given an 226× 226 RGB image, the encoder
generates an 8× 8 feature map with 1,056 channels.

Also, in each decoder, a variable number (0 to 4) of
WSM blocks [20] are used to expand low resolution fea-
tures to higher resolution depth maps Dn and Rn. Table S-
2 lists hyper-parameters of each WSM block.

Matrix completion: We use the ALS algorithm to com-
plete the comparison matrix Pn,n−1 in (8). Since ALS per-
forms element-wise operations in each step, its complexity
is proportional to the size of Pn,n−1, which is 24n−2. Thus,
the complexity grows 16 times for every unit increase in n.

To reduce the complexity, we develop a divide-and-
conquer approach. First, we divide a depth map into small
regions and construct the comparison sub-matrix for each
region. Specifically, for n ≥ 5, we divide Dn and Dn−1

into regions of sizes 16× 16 and 8× 8, respectively. Then,
for each pair of 16× 16 and 8× 8 regions, we construct the
comparison sub-matrix and restore missing entries. Then,
from these comparison sub-matrices, we reconstruct fine
detail maps Fk for n − 3 ≤ k ≤ n. However, since we do
not consider the comparison across sub-matrices, the coarse
scale components Fk, for 1 ≤ k ≤ n − 4 cannot be recon-
structed. Thus, these coarse scale components are excluded
from the combination in (7).

Depth component combination: We estimate up to ten
depth maps, Dn and Rn for 3 ≤ n ≤ 7, each of which is de-
composed into components, as listed in Table 1. Since there

Table S-1. Hyper-parameters of dense blocks [23] in the pro-
posed depth estimation network in Figure 2: n is the number of
composite functions, k the growth rate, H × W the feature map
resolution, ci the number of input channels, and co the number
of output channels. All dense blocks in the ten decoders have the
same hyper-parameters.

n k H ×W ci co
Dense E2 6 48 57× 57 96 384
Dense E3 12 48 29× 29 192 768
Dense E4 36 48 15× 15 384 2,112
Dense D 24 48 8× 8 1,056 2,208

Table S-2. Hyper-parameters of WSM blocks [20] in the de-
coders: c1 is the number of channels for 1 × 1, 3 × 3 and 5 × 5
kernels, c2 is the number of channels for W × 3 and 3 × H ker-
nels, H × W the feature map resolution, ci the number of input
channels, and co the number of output channels.

c1 c2 H ×W ci co
WSM D-1 416 208 16× 16 1,664 1,664
WSM D-2 208 104 32× 32 832 832
WSM D-3 104 52 64× 64 416 416
WSM D-4 52 26 128× 128 208 208

are multiple candidates for each component, we attempt to
obtain an optimal estimate by combining them. Then, we
use these optimal components to generate the final depth
map via (6).

For notational simplicity, let C be a component (i.e. D0

or Fn, 1 ≤ n ≤ 7 in Table 1), and let Ci be its ith candidate.
Then, we combine the candidates by

logC =
∑
i

w(i) logCi (S-1)

where w is a weight vector. We reshape each logCi into
a column vector ai, and logC into g. Then, (S-1) can be
rewritten as

g = Aw (S-2)

where the ith column of A is ai. We use training images



to determine the weight w. We attempt to minimize the
squared error ‖g(t) − A(t)w‖2, where g(t) is the ground
truth component for the t-th training image and A(t) is com-
posed of the corresponding component candidates. More
specifically, we solve the constrained optimization

w∗ = argmin
w

∑
t

‖g(t) −A(t)w‖2 (S-3)

subject to w ≥ 0, wmax ≤ αwmin and 1Tw ≤ β. We solve
this quadratic problem using the interior point method (1).
For optimizing D0 and Fn, 1 ≤ n ≤ 3, we set α = β =
1.05. On the other hand, for Fn, n ≥ 4, we impose only the
first constraint, since there are sufficient data and is a little
risk of over-fitting.

KITTI dataset [14]: We also apply our algorithm to an-
other dataset, KITTI, which is widely used for monocular
depth estimation. It provides outdoor RGB sequences and
their depths, scanned by LIDAR devices mounted on driv-
ing vehicles. It provides depth labels for sparse pixels only.
We adopt the split scheme [12] to extract 697 test images
from 29 scenes and 22,000 training ones from the remain-
ing 32 scenes.

We train the encoder-decoder CNN for this dataset us-
ing the same initialization methods, optimizers, and hyper-
parameters as those for the NYUv2 dataset, except that
we set the learning rate cycle of the shifted cosine func-
tion [22, 43] to 1 epoch due to the relative small size of the
KITTI dataset.

Since the depth information is provided only for very
sparse pixels, we need to generate the lower resolution
depth map Dn−1 in (3) in a different way. Specifically,
when we compute each depth in Dn−1, the geometric mean
is calculated in the corresponding region of Dn, excluding
pixels without depth labels. Moreover, if all depths in the re-
gion are missing, we approximate the depths with the near-
est neighbor method. However, this approximation of miss-
ing depths degrades the qualities of low resolution depth
maps, such as Dn and Rn for n = 3, 4, during the training.
Therefore, it also lowers the depth estimation performance
in the test phase. This is a challenge that needs to be ad-
dressed in future work.

The width of an image in KITTI is much longer than the
height. Therefore, an input image to the network is resized
to 161 × 483. For the same reason, the depth map Dn at
each scale is also resized, as listed in Table S-3. Even if
the spatial resolution of each depth map is modified, we
can derive Rn and Fn in the same manner as described in
Section 3.1.

S-2. Experiments on KITTI
Comparison with the state-of-the-arts: We measure
depth estimation performances for the ranges of 0 ∼ 50m

Table S-3. The spatial resolution of Dn for the KITTI dataset.

D0 D1 D2 D3 D4 D5 D6 D7

height 1 1 3 6 12 24 48 96
width 1 4 8 16 32 64 128 256

and 0 ∼ 80m separately. Table S-4 compares quantita-
tive results of the proposed algorithm with those of the con-
ventional algorithms in [12,13,66,69], [S1–S4] for the two
depth ranges. Each algorithm crops depth maps differently.
Hence, for common evaluation, we adopt the Garg et al.’s
evaluation protocol used in [69], [S1–S4].

Note that the proposed algorithm provides competitive
results on the KITTI dataset as well. For most metrics,
the proposed algorithm yields the second best performance.
Figure S-1 shows qualitative comparison results on KITTI.

Notice that the performance of the proposed algorithm
on KITTI is relatively low in comparison with that on
NYUv2. This is because KITTI provides depth information
for very sparse pixels only. Therefore, as mentioned previ-
ously, approximate and imprecise depths are used for low-
resolution depth maps, such as Dn and Rn for n = 3, 4,
which makes the training process less reliable. Reliable
training in case of sparse depth information is a challenge
for future work.
Ablation study: On the KITTI dataset as well, we perform
experiments using various combinations of depth maps and
summarize the results in Table S-5. We make the following
observations:

• When using a single ordinary depth map, a higher reso-
lution one gives better results. In particular, the perfor-
mance gap between the highest and lowest resolution
ones is even bigger, as compared with NYUv2, due to
the characteristics of KITTI in which training labels
are provided for sparse pixels only.

• It is reaffirmed that relative depth maps are more effec-
tive in reconstructing depths than ordinary depth maps.
For example, combination (R3,R4,R5,R6,D7) out-
performs combination (D3,D4,D5,D6,D7).

• Similar to NYUv2, combining one ordinary depth map
and four relative depth maps shows the best perfor-
mance. Combining additional ordinary depth maps
does not improve performance.

S-3. Additional Experiments on NYUv2
More qualitative comparisons: Figure S-2 shows addi-
tional comparison results with [6, 12, 13, 31, 33]. In most
cases, the proposed algorithm yields a more accurate esti-
mation result than the conventional algorithms.

Depth component analysis: In Figure S-3, we show or-



Table S-4. Performance comparison on the KITTI dataset. The best results are boldfaced, and the second best ones are underlined. Note
that the algorithms marked with ‘*’ follow the different evaluation method from our algorithm. All other algorithms including the proposed
algorithm follow the evaluation method of [S1].

Cap The lower, the better The higher, the better
RMSE (lin) RMSE (log) ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [12] * 0 - 80m 7.156 0.270 0.190 1.515 69.2% 89.9% 96.7%
Zhuo et al. [S4] 0 - 80m 6.565 0.275 0.198 1.836 71.8% 90.1% 96.0%
Yin and Shi [69] 0 - 80m 5.737 0.232 0.153 1.328 80.2% 93.4% 97.2%
Xu et al. [66] * 0 - 80m 4.677 - 0.122 0.897 81.8% 95.4% 98.5%
Godard et al. [S2] 0 - 80m 4.935 0.206 0.114 0.898 86.1% 94.9% 97.6%
Kuznietsov et al. [S3] 0 - 80m 4.621 0.189 0.113 0.741 86.2% 96.0% 98.6%
Fu et al. [13] * 0 - 80m 2.727 0.120 0.072 0.307 93.2% 98.4% 99.4%
Proposed 0 - 80m 4.781 0.179 0.108 0.702 86.7% 96.4% 98.8%
Garg et al. [S1] 0 - 50m 5.104 0.273 0.169 1.080 74.0% 90.4% 96.2%
Zhuo et al. [S4] 0 - 50m 4.975 0.258 0.190 1.436 73.5% 91.5% 96.8%
Yin and Shi [69] 0 - 50m 4.348 0.218 0.147 0.936 81.0% 94.1% 97.7%
Godard et al. [S2] 0 - 50m 3.729 0.194 0.108 0.657 87.3% 95.4% 97.9%
Kuznietsov et al. [S3] 0 - 50m 3.518 0.179 0.108 0.595 87.5% 96.4% 98.8%
Fu et al. [13] * 0 - 50m 2.271 0.116 0.071 0.268 93.6% 98.5% 99.5%
Proposed 0 - 50m 3.568 0.167 0.103 0.551 88.1% 97.0% 99.1%

Table S-5. Ablation study using various combinations of depth maps on the KITTI dataset.
Used ordinary depth map Used relative depth map Cap The lower, the better The higher, the better

D3 D4 D5 D6 D7 R3 R4 R5 R6 RMSE (lin) ARD δ < 1.25 δ < 1.252 δ < 1.253 ρ√
- - - - - - - - 0 - 80m 7.080 0.202 68.1% 88.2% 96.1% 0.889

- -
√

- - - - - - 0 - 80m 5.046 0.116 84.9% 95.9% 98.7% 0.949
- - - -

√
- - - - 0 - 80m 4.869 0.111 86.2% 96.2% 98.8% 0.953√ √ √ √ √
- - - - 0 - 80m 4.851 0.111 86.2% 96.3% 98.8% 0.953

- - - -
√ √ √ √ √

0 - 80m 4.781 0.108 86.7% 96.4% 98.8% 0.955√ √ √ √ √ √ √ √ √
0 - 80m 4.784 0.108 86.7% 96.4% 98.8% 0.955√

- - - - - - - - 0 - 50m 5.261 0.195 68.1% 88.2% 97.0% 0.883
- -

√
- - - - - - 0 - 50m 3.757 0.111 86.4% 96.6% 99.0% 0.947

- - - -
√

- - - - 0 - 50m 3.654 0.106 87.7% 96.9% 99.0% 0.951√ √ √ √ √
- - - - 0 - 50m 3.644 0.106 87.6% 96.9% 99.0% 0.951

- - - -
√ √ √ √ √

0 - 50m 3.568 0.103 88.1% 97.0% 99.1% 0.953√ √ √ √ √ √ √ √ √
0 - 50m 3.568 0.103 88.1% 97.0% 99.1% 0.953

dinary depth maps Dn, relative depth maps Rn, and fi-
nal combined depth maps. Compared to an ordinary depth
map of the same resolution, the relative depth map recon-
structs fine details more faithfully. Thus, the proposed al-
gorithm, which combines the two kinds of depth maps, pro-
vides higher quality depth maps than the conventional algo-
rithms, which estimate only ordinary depth maps.

To demonstrate this, we decompose depth maps, esti-
mated by the proposed algorithm and the conventional al-
gorithms [13, 31], into components D0 and Fn according
to (6). Then, for each fine detail map Fn, 1 ≤ n ≤ 6, we
evaluate the objective qualities using four metrics: Spear-
man’s ρ, δ < 1.25, RMSE (log) and ARD. Figure S-4 shows
the results. For Fn, n ≥ 2, the proposed algorithm outper-
forms the other algorithms in all metrics. Figure S-5 also
compares depth components. Again, we see that the pro-
posed algorithm restores fine details more faithfully than
the conventional algorithms.

Computation times: Table S-6 lists the average computa-
tion times of the NYU v2 test data. The default mode takes
0.816s to estimate a depth map. If we adopt the light mode

using four maps (D3, R3, R4, R5), it takes 0.234s only,
even though its performance is still competitive in Table 4.
Table S-6. Computation times (s). ‘Net’ means the network com-
putation and ‘Comb’ means the depth component combination.

Net ALS Comb Total
Proposed (light) 0.073 0.080 0.081 0.234
Proposed (default) 0.134 0.594 0.088 0.816
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Figure S-1. Qualitative comparison of Eigen et al. [12], Kuznietsov et al. [S3], Fu et al. [13], and the proposed algorithm on the KITTI
dataset. Predicted depth maps (Pred) and error maps (Err) are provided for easier comparison.
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Near Distant Exact pred. Farther err.Closer err.

Figure S-2. Qualitative comparison of Eigen et al. [12], Chakrabarti et al. [6] Laina et al. [31], Lee et al. [33], Fu et al. [13], and the
proposed algorithm on NYUv2 images. Predicted depth maps (Pred) and error maps (Err) are provided for easier comparison.
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Figure S-3. Individual depth maps Dn and Rn, 3 ≤ n ≤ 7, and final combined depth maps using (D3,R3,R4,R5,R6) in the default
mode.
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Figure S-4. Comparison of fine detail maps Fn, 1 ≤ n ≤ 6, which are decomposed from depth maps, estimated by Laina et al. [31], Fu et
al. [13], and the proposed algorithm, respectively.
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Figure S-5. Qualitative comparison of depth components (D0,F1,F2,F3,F4,F5,F6), produced by Laina et al. [31], Fu et al. [13], and
the proposed algorithm. Predicted depth maps (Pred) and error maps (Err) are provided for easier comparison.


