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Here we present a detailed description of the kernel soft argmax and loss functions in Secs. 1 and 2, respectively, and
show more quantitative comparisons with the state of the art on three benchmark datasets in Sec. 3: PF-PASCAL [6], PF-
WILLOW [5], and TSS [21]. We show alignment examples of a dense flow field on the PF-PASCAL [6], PF-WILLOW [5],
TSS [21], and Caltech-101 [4] datasets in Sec. 4. We then discuss issues including training with bounding boxes and with
other datasets in Sec. 5.
1. Kernel soft argmax

The soft argmax [8, 9] is differentiable, but is susceptible to multi-modal distributions. It computes an output by a weighted
average (i.e., an expected value of all spatial coordinates weighted by corresponding probabilities mp). This approximates the
discrete argmax only when the matching probability mp is unimodal with one clear peak. The kernel soft argmax, on the
other hand, makes the matching probability mp have an (approximately) uni-modal distribution, by a 2-dimensional Gaussian
kernel kp centered on the position obtained by the discrete argmax. Note that the center position of the Gaussian kernel is
changed every iterations at training time. Note also that the kernel soft argmax is differentiable, since we do not train the
Gaussian kernel itself and no gradients are propagated through the discrete argmax. Figure 1 shows an example of estimating
correspondences using soft and kernel soft argmax operators. We can clearly see that the soft argmax yields an incorrect
correspondence in the presence of multiple highly correlated features, since a weighted average of matching probabilities
having multi-modal distributions accumulates positional errors. For example, the soft argmax establishes a correspondence
between the points in the background and ship. On the contrary, the Gaussian kernel in the kernel soft argmax suppresses
matching probabilities except the ones around the highest value, providing a correct correspondence.
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Figure 1: Visualization of soft and kernel soft argmax operations. A point to be matched in the source image is shown in the square.
Correspondences computed by either soft or kernel soft argmax operators are shown in crosses. The points, denoted by diamonds, are
correspondences established by the discrete argmax. When multiple features are highly correlated, the soft argmax often gives incorrect
matches. The kernel soft argmax avoids this problem and approximates the discrete argmax well while maintaining differentiability. (Best
viewed in color.)
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2. Training loss
Mask and flow consistency losses. Although a mask consistency term encourages matches between features within fore-
ground/background masks, it may cause a many-to-one matching problem. That is, it does not penalize the case when multiple
points are matched to a single one (Fig. 2(a)), since binary masks do not give a positional certainty of correspondences. For
example, the foreground mask in the source image can be reconstructed using a single foreground label in the target image. A
flow consistency term alleviates this problem. In Fig. 2(b), all points except the center one are penalized by this term. Note that
having multiple matches for individual points (i.e., a one-to-many matching) is impossible within our framework. Accordingly,
the flow consistency term favors a one-to-one matching (Fig. 2(c)).

Symmetric loss. Although the flow consistency loss gives a one-to-one matching, using this loss for a source or a target
image only may cause a flow shrinkage problem (Fig. 3(a)). Computing this loss in a symmetric way alleviates this problem.
We compute the flow consistency term w.r.t both source and target images, i.e.,

Lflow =
∑
p

(
||(Fs(p) + F̂s(p))�Ms(p)||22 + ||(F t(p) + F̂ t(p))�M t(p)||22

)
. (1)

The second term in (1) penalizes the inconsistent matches, e.g., between the entire foreground region in the source image and
small parts of the target image (Fig. 3(b)). Using the first or the second term in (1) only does not handle such cases. Note that
spreading the flow fields over the entire regions is particularly important to handle scale changes between objects (Fig. 3(c)).
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Figure 2: Many-to-one matching. (a) Using the mask consistency term only may cause a many-to-one matching problem. Multiple yellow
points in the source image can be matched to the single blue one in the target image. The flow consistency term (b) penalizes inconsistent
correspondences and (c) favors a one-to-one matching. We denote by green and red arrows consistent and inconsistent matches, respectively.
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Figure 3: Symmetric loss. (a) Considering the flow consistency loss w.r.t a source image may cause a flow shrinkage problem. (b) We penalize
inconsistent matches by computing the loss w.r.t a target image as well. (c) This symmetric loss allows to establish an object-to-object
matching. We denote by green and red arrows consistent and inconsistent matches, respectively.



3. Quantitative results
PF-WILLOW & PF-PASCAL. Table 1 shows per-class PCK scores on the PF-PASCAL dataset [6]. We compute the
scores in [17, 18, 20] by the provided models (affine + TPS), and take others from [6]. Our model achieves state-of-the-art
results for 19 object categories, and outperforms all methods on average by a significant margin. We compare in Table 2 the
average PCK scores on the PF datasets. Following [7, 18], they are measured with keypoint coordinates normalized in the
range of [0, 1] by dividing them with height and width of the image size, respectively, which gives a threshold value larger than
the one obtained by the object bounding box in Table 1, resulting in higher scores.
Method aero bike bird boat bot bus car cat cha cow tab dog hor mbik pers plnt she sofa trai tv Avg.

DeepFlow [16] 0.55 0.31 0.10 0.19 0.24 0.36 0.31 0.12 0.22 0.10 0.23 0.07 0.11 0.32 0.10 0.08 0.07 0.20 0.31 0.17 0.21
GMK [2] 0.61 0.49 0.15 0.21 0.29 0.47 0.52 0.14 0.23 0.23 0.24 0.09 0.13 0.39 0.12 0.16 0.10 0.22 0.33 0.22 0.27
SIFTFlow [15] 0.61 0.56 0.20 0.34 0.32 0.54 0.56 0.26 0.29 0.21 0.33 0.17 0.23 0.43 0.18 0.17 0.17 0.31 0.41 0.34 0.33
DSP [10] 0.64 0.56 0.17 0.27 0.37 0.51 0.55 0.29 0.23 0.24 0.19 0.15 0.23 0.41 0.15 0.11 0.18 0.27 0.35 0.27 0.39
HOG+PF-LOM [5] 0.75 0.76 0.34 0.41 0.55 0.71 0.73 0.32 0.41 0.41 0.21 0.27 0.38 0.57 0.29 0.17 0.33 0.34 0.54 0.46 0.45
ResNet-101+CNNGeo [17] 0.83 0.78 0.73 0.54 0.55 0.77 0.92 0.82 0.41 0.85 0.24 0.74 0.61 0.73 0.64 0.73 0.80 0.47 0.41 0.43 0.68
ResNet-101+A2Net [20] 0.84 0.81 0.72 0.50 0.56 0.77 0.88 0.83 0.38 0.83 0.12 0.70 0.33 0.70 0.72 0.70 0.80 0.40 0.34 0.52 0.67
ResNet-101+WS-SA [18] 0.84 0.85 0.77 0.64 0.70 0.86 0.92 0.83 0.41 0.85 0.22 0.77 0.58 0.73 0.69 0.76 0.80 0.57 0.55 0.55 0.72
Proposed 0.89 0.89 0.83 0.71 0.86 0.93 0.95 0.83 0.66 0.94 0.52 0.81 0.72 0.81 0.72 0.71 1.00 0.69 0.81 0.79 0.79

Table 1: Per-class PCK on the PF-PASCAL dataset [6].

Type Methods
PCK (α = 0.1)

WILLOW PASCAL

C
N

N
-b

as
ed

F (C) GoogLeNet+UCN [1] 0.42 0.56
F (C) VGG-16+SCNet-AG+ [7] 0.70 0.72
A (T) ResNet-101+CNNGeo [17] 0.81 0.72
A (T) ResNet-101+A2Net [20] 0.82 0.71
A (T+P) ResNet-101+WS-SA [18] 0.84 0.76
F (M) ResNet-101+RTNs [11] - 0.76
F (P) ResNet-101+NCN [19] - 0.79
F (M) ResNet-101+Ours 0.84 0.82

Table 2: Quantitative comparison with the state of the art on the PF-WILLOW [5] and the test split of the PF-PASCAL [6, 7]
in terms of the average PCK. We measure the PCK scores with height and width of the image size instead of the bounding box
size.
TSS. This dataset [21] consists of three subsets (FG3DCar, JODS and PASCAL) that contain 400 image pairs of 7 object
categories. It provides dense flow fields obtained by interpolating sparse keypoint matches with additional co-segmentation
masks. Following the experimental protocol in [18], we compute the PCK scores densely over the foreground object where
the distance threshold is set with α = 0.05 and the height and width of the image size. Table 3 compares the average PCK
on each subset in the TSS dataset. Our method shows better performance than the state of the art for FG3DCar and JODS.
The PASCAL in the TSS contains many image pairs with different poses (e.g., car objects captured with left- and right-side
viewpoints). Current methods except for OADSC [22], that is specially designed for handling changes in viewpoints, have a
limited capability of finding matches between images with different poses.

Type Methods FG3D. JODS PASC.

H
an

d-
cr

af
te

d

F DSP [10] 0.487 0.465 0.382
F DFF [23] 0.493 0.303 0.224
F SIFTFlow [15] 0.634 0.522 0.453
F HOG+PF-LOM [5] 0.786 0.653 0.531
F HOG+TSS [21] 0.830 0.595 0.483
F HOG+OADSC [22] 0.875 0.708 0.729

C
N

N
-b

as
ed

A (T) VGG-16+A2Net [20] 0.870 0.670 0.550
A (T) ResNet-101+CNNGeo [17] 0.901 0.764 0.563
A (T+P) ResNet-101+WS-SA [18] 0.903 0.764 0.565
F (B+P) FCSS+PF-LOM [12] 0.839 0.635 0.582
F (B+P) FCSS+DCTM [13] 0.891 0.721 0.610
F (M) ResNet-101+Ours 0.906 0.787 0.565

Table 3: Quantitative comparison on the TSS dataset [21]. All numbers are taken from [18, 21].



4. Aligned examples
Figures 4, 5, 6, 7 show alignment examples between source and target images on the PF-WILLOW [5], PF-PASCAL [6],

TSS [21], and Caltech-101 [4] datasets, respectively. The source images are warped to the target images using dense flow fields
established by our model. The alignment examples show that our method establishes semantic correspondences robust to scale
changes between objects (e.g., cars in the first two rows in Fig. 4), background clutter (e.g., bikes in the first row in Fig. 5) and
local non-rigid deformations (e.g., bird’s neck, body, and legs in the fifth and sixth rows in Fig. 7). In Figs. 4, 5 and 6, we
also show top 60 matches chosen according to matching probabilities. We can see that most strong matches are established
between prominent objects, and matches between foreground and background regions have low matching probabilities. In
Fig. 7, we additionally show label transfer results overlaid on target images.

Source image. Target image. Alignment. Top 60 matches.

Figure 4: Alignment examples on the PF-WILLOW dataset [5]. Keypoints of the source and target images are shown in diamonds and
crosses, respectively, with a vector representing the matching error. We visualize top 60 matches according to matching probabilities. (Best
viewed in color.)



Source image. Target image. Alignment. Top 60 matches.

Figure 5: Alignment examples on the PF-PASCAL dataset [6]. Keypoints of the source and target images are shown in diamonds and
crosses, respectively, with a vector representing the matching error. We visualize top 60 matches according to matching probabilities. (Best
viewed in color.)



Source image. Target image. Alignment. Ground truth. Top 60 matches.

Figure 6: Alignment examples on the TSS dataset [21]. We visualize top 60 matches according to matching probabilities. (Best viewed in
color.)



Source image. Target image. Alignment. Label transfer. Source image. Target image. Alignment. Label transfer.
Figure 7: Alignment examples on the Caltech-101 dataset [4]. The source and target masks are overlaid on corresponding images. We
transfer pixel labels of the source images to the target ones using established correspondences. (Best viewed in color.)



5. Discussion
Parameter setting. We use a grid search with pairs of the temperature parameter β and standard deviation σ where the
maximum search ranges of β and σ are 100 and 10 with intervals of 10 and 1, respectively. We then select a pair of parameters
that gives the best performance on the validation split of the PF-PASCAL dataset [6, 18]. Other parameters (λmask, λflow,
λflow) are similarly chosen with the validation split of the PF-PASCAL dataset [6, 18].

Training with bounding boxes. We try using the bounding boxes themselves as binary masks during training. The generated
masks are noisy, but are less expensive to annotate than ground-truth foreground masks. We use the same 2,791 images from
the Pascal VOC 2012 segmentation dataset [3] for training, for an average PCK (α = 0.1) of 0.779 on PF-PASCAL [6], which
is comparable with the score of 0.787 obtained using ground-truth masks. Using flow consistency terms of (8) w.r.t both source
and target images penalizes matches between background and foreground regions, making our method robust to noisy labels.

Training on PF-PASCAL. CNN-based methods use different training sets, e.g., the train split of PF-PASCAL [6] (about
700 image pairs) for [7, 18] and Pascal VOC 2011 (11,540 images) for [17, 18, 20]. In [17, 18], the Tokyo Time Machine
dataset (20,000 images) is also used. For fair comparison with [7], we train a network on the training split in PF-PASCAL.
We excluded 302 images in this split that overlap with either target or source images in the test dataset. Note that [7, 18]
ignore this bias. We use object bounding boxes due to the lack of ground-truth foreground masks in the training split. The
corresponding average PCK (α = 0.1) of 0.778 on PF-PASCAL still outperforms the state of the art (e.g., 0.72 for [18] and
0.68 for [17]) by a large margin.

Training on larger datasets. To test this, we use the MS COCO 2014 training dataset [14]. Among 80 object categories, we
select 16,624 images of 20 object classes of Pascal VOC 2012 [3] using segmentation masks, which is about 6× the number
used in the paper (2,791 images). We test our model on PF-PASCAL [6], since MS COCO does not provide benchmarks for
semantic correspondence. Despite using a larger number of training samples, the average PCK (α = 0.1) decreases slightly
from 0.787 to 0.771, mainly due to domain differences between MS COCO and Pascal VOC. This, however, demonstrates
once more the generalization ability of our approach to samples outside the training domain.
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