
Supplementary material

A. Preservation of kernel asymmetry

Lemma 2.1 in the main paper ensures kernel asymmetry property. Let xa and xb be two points that exist in each others
neighborhood. Consider xa to be the first target point, i.e. we first perform convolution over its neighborhood with xa at
the kernel center. Say, this convolution results in Wa applied to xb. Now we perform a second convolution with xb as the
target point. This results in Wb applied to xa. If asymmetry is not preserved then Wa = Wb. This symmetric application
of weights to point pairs leads to significant redundancy in the learned kernels. Asymmetry inhibits this problem and results
in much more effective data modeling. In Fig. 7, we illustrate three simple scenarios that do not abide by Lemma 2.1, and
hence violate the asymmetry property. We emphasize that these examples are for illustration only - justifying the rigour of
mathematical analysis provided in the paper. Our method does not allow such cases following Lemma 2.1.

Figure 7. Examples of kernel bin divisions violating Lemma 2.1, and hence the asymmetry property. (a) The spherical space is not divided
at all, which results in the same weight matrix applied to the point pair. (b) With � = [�⇡

2 ,
⇡
2 ] and arbitrary ⇥, there is no division along

the � dimension, resulting in symmetric application of weights to the pair xa-xb on the z-axis or lines parallel to it. (c) ⇥ = [�⇡, 0,⇡],
i.e. n = 2 and arbitrary �. The kernel is divided into two bins along ✓, which results in the point pair xa-xb on the x-axis or its parallel
lines to share weights in a bin corresponding to a hemisphere.

B. Effective geometric exploration of the spherical kernel

Among the compared methods, ECC [33] and OctNet [29] learn features using convolution operations. ECC uses dy-
namically generated filters, whereas OctNet employs 3D-CNN kernels. As compared to these methods, our spherical kernel
is able to explore the geometric structure of point clouds more effectively. To demonstrate that, we remove the hierarchi-
cal concatenations of max-pooled features in our classification network, i.e. MLP(32)-Octree(64-64-64-128-128-128) and
perform classification with ModelNet datasets. The resulting variant of our method matches ECC and OctNet in ignoring
the intermediate layer features for the final classification. We report results of this variant in Table 5, which demonstrate a
strong performance of the proposed  -CNN even without the intermediate feature exploitation. This ascertains that the main
strength of our method comes from the proposed spherical kernels.

Table 5. Classification results on ModelNets [39].  -CNN derives its main strenght from the spherical kernels.

Method ModelNet10 ModelNet40
class instance class instance

OctNet [29] 90.1 90.9 83.8 86.5
ECC [33] 90.0 90.8 83.2 87.4
 -CNN (without intermediate features) 94.0 94.0 87.8 91.1

 -CNN (with intermediate features) 94.4 94.6 88.7 92.0

C. Further examples of Part Segmentation

More examples of high- and low-quality segmentation resulting from our method are given below. As noted in the main
paper, most of the low-quality results are normally caused by (reason-1): confusing ground truth labelling or (reason-2):
small parts without clear boundaries. In Fig. 8, we can see that the high-quality segmentations are quite satisfactory.
Among the low-quality segmentations in Fig. 9, the samples of Laptop, Table, Earphone, and Knife result in low mIoUs
because of reason-1, whereas the samples of Motorbike, and Pistol have low mIoUs because of reason-2. Note that, although
the obtained mIoUs are low in Fig. 9, the segmentations are generally visually acceptable. For instance, our method classifies
the part of the cutting edge of Knife that is ‘hidden in the handle’, as its handle. Similar intuitive explanations can be found
for nearly all the samples. Our ‘Forward pass’/’Total’ time for ShapeNet segmentation is 31.2ms/32.2ms.



High-Quality Segmentation
GT Ours GT Ours

Motorbike 90.3% Pistol 94.6%

Guitar 90.9% Laptop 97.2%

Table 92.2% Earphone 99.4%

Knife 97.8% Airplane 92.7%
Figure 8. Examples of high-quality segmentations resulting form  -CNN. Computed mIoU value is also given with each sample. Color
coding is within category (best viewed on screen).



Low-Quality Segmentation
GT Ours GT Ours

Motorbike 56.4% Pistol 56.6%

Guitar 56.6% Laptop 55.8%

Table 56.6% Earphone 50.7%

Knife 53.8% Airplane 32.8%
Figure 9. Examples of low-quality segmentation. The mIoU values are also given. Laptop, Table, Earphone and Knife result in low mIoUs
because of confusing ground truth labeling, whereas Motorbike and Pistol have low mIoUs because of small object parts with no clear
boundaries. Despite the low mIoUs, the segmentation results are generally visually acceptable.



D. Examples of Semantic Segmentation

We provide segmentation examples for RueMonge2014 dataset [30] in Fig. 10. The numbers show the Overall Accuracy
(OA) of each point cloud split.

GT Ours GT Ours

OA: 86.1% OA: 85.5%

OA: 86.9% OA: 86.3%
Figure 10. Examples of segmentation of RueMonge2014 using  -CNN. Each sample also provides the accuracy value computed for the
point cloud shown.

E. Kernel Visualization

We also provide visualization of a spherical kernel learned at the lowest octree level of our classification network in
Fig. 11. A weight-matrix in each kernel bin is defined by 32 input and 64 output channels in this case. For the visualization,
we reduce the input channel to a single dimension using PCA. In the shown figures, each sphere corresponds to one output
channel of the 8 ⇥ 2 ⇥ 3 kernel (self-convolution is ignored because it covers only the center point). Combined, the shown
64 spheres represent a single kernel with 32 input and 64 output channels. Different structures of the patterns presented by
each sphere demonstrate effective learning of the weights.



Figure 11. Visualization of a 8⇥ 2⇥ 3 spherical kernel learned at the lowest octree level of our classification network. The kernel has 32
input and 64 output channels. Each sphere corresponds to one output channel, whereas the intensity value in each bin of a shown sphere
corresponds to the first principal component of the input channels. The images are organized from top-left to bottom-right (row-wise)
following the output channel indices, i.e. 1- 64. Distinct patterns for different spheres indicate effective kernel weight learning.


