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1. Sigmoidal Transition Function

The sigmoidal transition function of Section 3.4 is defined as follows:

Sigmoid(d(t — 0.5)) — o
1-26 )]
0 = Sigmoid(—0.5d)

T(t,d) =

where d controls the “hardness” of the sigmoid curve. d — 0 gives a linear transition, and d — oo
gives a hard sigmoid. d = 10 was found empirically to be effective. The sigmoid must be shifted by §
and scaled by (1 — 26) so that T'(0,d) = 0and T'(1,d) = 1.

2. Mixed Block Implementation

In Algorithm 1 below, we present an implementation for the atypical connectivity presented in Figure
4 of the paper. While the input and delta tensors have the same number of prunable features, they
can have a different pruning mask. We use indexing operations to exclude pruned features from the
computations.

Note that, in the case where the block is responsible of performing a downsampling of the input tensor
(or augmenting the number of features, or both), the residual connection is not an identity function;
rather, it is a convolution fyes(+) that can have pruned features.

Algorithm 1: Forward Pass for the Mixed Block
Data:
Zin : Input tensor of size (batch_size, n_features, height, width)
fa(+) : Delta branch function
iin ¢ Indices of alive features in input tensor
ia - Indices of alive features in delta tensor
fres(+) : Residual branch function (can be @ if identity connection)
ires - Indices of alive features in output of residual function (if fies(:) # @)
Nyes : Number of output features of unpruned residual function (if fies(:) # 2)
Result: 2, : Output tensor

1 Zalive < LL‘in[Z, Z-inz 5 :]

2 if fies(-) = @ then

3 L Tout < tin

4 else

5 Tres <= fres (-ralive)

6 height, width < get_height(2yes), get-width(zyes)
7 Zous < zeros(batch_size, Nyes, height, width)

8 Zout[:, Tress 1y 1] < Tres

9 A<= fA(xaIivc)

10 Tout]:, iA, 5] < Tous[sia, 5] + A

3. Training Schedules

Here, we give details about the number of epochs used for each training phase and for each method.



3.1. Training Schedule for LZR, IB, MorphNet and Our Method

LZR[22], IB[1] and Ours For CIFAR-10 and CIFAR-100, we first train for 80 epochs. Then, the
network is “hard-pruned” using the algorithm associated to the pruning method. Next, we freeze ®, and
we train for 40 additional epochs. Finally, we reduce the learning rate from 10~3 to 10~* and train for
10 more epochs. For Mio-TCD, we shorten the three stages to (40, 20, 10) epochs (this dataset is ~ 10x
larger). For Mio-TCD only, we initialize the weights to those of the full (unpruned) network (c.f. Section
3.3).

MorphNet[9] For CIFAR-10 and CIFAR-100, we first train for 60 epochs. Then, the network is
“hard-pruned” using the algorithm proposed by the original paper. Next, we train for 50 additional
epochs. Finally, we reduce the learning rate from 1072 to 10~* and train for 20 more epochs. For
Mio-TCD, we shorten the three stages to (40, 20, 10) epochs.

3.2. Pruning Scheme for Random, VM, VQ and ID

For Random, WM[10], VQ[8], and ID[6,16], we implemented the following pruning scheme which
revealed to be effective and efficient:

1. Perform initial training of the full network for 40 epochs;
2. Reduce learning rate and continue training for 10 epochs;
3. Prune 50% of the network’s volume V;
4. Train the network again with high learning rate, for 40 epochs;
5. Reduce learning rate and continue training for 10 epochs;
6. Record the network performance for the current pruning factor;
7. Return to 3 for the remaining pruning steps.
This scheme leads to four pruning factors: 2, 4, 8, 16.
3.3. Training Schedule for the Full (Unpruned) Networks

For CIFAR-10 and CIFAR-100, we trained for 80 epochs at learning rate 102, and 10 more epochs
at learning rate 10~%. For Mio-TCD, a dataset ~ 10x larger, we trained for 40 epochs at high learning
rate and 10 epochs at low learning rate.

4. Initialization of Dropout Sparsity Parameters ¢

For LZR, where ® := {«,;}, we initialized all « from a uniform distribution /(0,0.01). We did
not observe a significant change between using ¢/(0,0.01) or A/(0, 0.01?) (the initialization distribution
suggested by [22]). Our method has the same ® and initialization scheme than LZR[22]. For IB, where
® := {u;, 0}, we initialized the parameters from Gaussian distributions: ;1 ~ A (1,0.01%),logo ~
N(=9,0.012) (values obtained by personal communication with the authors [1]).

5. Impact of Mixed-Connectivity Block on Metrics

Here we compare the objective metrics (i.e. Activation Volume V and FLOP) when the regular
Resblock is used and when our Mixed-Connectivity block is used. These are the results obtained from
our method (BAR). A is the relative difference to the results for the Regular block. The following three
tables provide further details to Table 2 in the paper.

5.1. CIFAR-10

Activation Volume (V) FLOP
Pruning Factor Regular Mixed A Regular Mixed A
2 1.79E+06 1.58E+06 -12% | 2.71E+09 2.35E+09 -13%
4 1.37E+06 7.88E+05 -43% | 1.51E+09 9.49E+08 -37%
8 8.43E+05 3.93E+05 -53% | 8.06E+08 4.46E+08 -45%
16 4.67E+05 1.97E+05 -58% | 4.20E+08 2.20E+08 -48%




5.2. CIFAR-100

Activation Volume (V) FLOP
Pruning Factor Regular Mixed A Regular Mixed A
2 1.84E+06 1.58E+06 -14% | 2.68E+09 2.29E+09 -15%
4 1.53E+06 7.88E+05 -49% | 1.85E+09 1.10E+09 -40%
8 8.76E+05 3.93E+05 -55% | 1.08E+09 6.03E+08 -44%
16 4.59E+05 1.97E+05 -57% | 6.21E+08 3.27E+08 -47%
5.3. Mio-TCD
Activation Volume (V) FLOP
Pruning Factor Regular Mixed A Regular Mixed A
2 2.66E+06 1.81E+06 -32% | 1.15E+09 8.33E+08 -28%
4 1.45E+06 9.07E+05 -37% | 2.50E+08 1.56E+08 -38%
8 7.51E+05 4.54E+05 -40% | 6.87E+07 3.98E+07 -42%
16 4.70E+05 2.26E+05 -52% | 3.31E+07 1.66E+07 -50%
6. Pruning Results

Here we give the numbers that we used to plot the curves of Figures 6 and 8. All methods prune ac-
cording to the Activation Volume V', except for “Ours (F-trained)”, which prunes with a FLOP reduction
objective. Please note that results with a volume factor greater than 16 have not been included.

6.1. CIFAR-10

Method  V factor F factor Test Accu. | Method V factor F factor Test Accu.
Random 2.0 4.0 0.8963 | LZR 1.1 1.2 0.9182
4.0 16.0 0.8802 2.1 5.3 0.9204

8.0 64.0 0.8462 4.3 38.1 0.9210

16.0 255.8 0.8136 73 62.0 09171

vQ 3.1 9.4 0.9124 15.8 167.4 0.8970
4.6 21.0 0.9089 | IB 1.3 1.8 0.9085

8.1 64.9 0.8862 1.3 1.8 0.9128

16.0 256.7 0.8459 2.3 5.2 0.9097

WM 2.0 4.0 09111 5.8 38.6 0.9048
4.0 16.0 0.9120 74 79.9 0.9014

8.0 64.0 0.8968 9.5 113.7 0.8965

16.0 255.8 0.8633 15.2 196.4 0.8795

ID 2.0 4.0 0.9109 | MorphNet 2.0 4.0 0.9325
4.0 16.0 0.9144 4.0 16.0 0.9289

8.0 64.0 0.9037 7.9 64.0 0.9066

16.0 255.8 0.8692 1158 255.8 0.8643

Ours 2.0 6.4 0.9270 | Ours 1.7 4.0 0.9395
4.0 159 0.9278 | (F-trained) 2.9 16.0 0.9350

179 33.8 0.9280 4.4 163.9 0.9217

115.8 68.5 0.9162 6.1 256.0 0.9010

The results marked with a dagger (}) are slightly below target because of a slight miscalculation of the total volume and of the
budget; this has since been fixed in our implementation.



6.2. CIFAR-100

Method  V factor F factor Test Accu. | Method V factor F factor Test Accu.
Random 2.0 4.0 0.6751 | LZR 1.0 1.1 0.7201
4.0 16.0 0.6364 2.0 6.0 0.7039
8.0 64.0 0.5922 3.0 31.9 0.7152
16.0 255.8 0.4888 6.6 57.5 0.7075
vVQ 2.5 94 0.6963 13.0 110.6 0.6728
4.3 21.0 0.6927 | 1B 1.2 1.5 0.7127
8.0 64.9 0.6703 1.3 1.8 0.7093
16.0 256.7 0.5899 2.0 3.1 0.7079
WM 2.0 4.0 0.6898 4.8 24.9 0.6508
4.0 16.0 0.6910 6.3 58.5 0.6905
8.0 64.0 0.6542 8.8 94.3 0.5709
16.0 255.8 0.5899 12.7 148.5 0.5671
ID 2.0 4.0 0.6929 | MorphNet 2.0 4.0 0.7359
4.0 16.0 0.6975 4.0 16.0 0.7042
8.0 64.0 0.6603 7.9 64.0 0.6494
16.0 255.8 0.5913 1158 255.8 0.5549
Ours 2.0 6.6 0.7408
4.0 13.7 0.7359
7.9 25.0 0.7259
115.8 46.2 0.7053
The dagger (1) has the same meaning as in the previous table.
6.3. Mio-TCD
Method  V factor F factor Test Accu. | Method V factor F factor Test Accu.
Random 2.0 4.0 0.9417 | LZR 1.0 1.0 0.9521
4.0 16.0 0.9330 1.0 1.0 0.9509
8.0 63.7 0.9191 1.0 1.0 0.9524
16.0 253.7 0.9119 1.6 2.9 0.9524
vVQ 3.6 12.6 0.9504 3.8 14.8 0.9507
5.5 30.0 0.9472 11.7 201.6 0.9510
8.7 75.8 0.9448 | IB 1.4 2.3 0.9509
16.3 266.3 0.9343 1.9 3.1 0.9516
WM 2.0 4.0 0.9497 7.5 57.3 0.9478
4.0 16.0 0.9507 11.5 145.0 0.9211
8.0 63.7 0.9488 14.2 192.6 0.9127
16.0 253.7 0.9406 15.2 232.6 0.9070
ID 2.0 4.0 0.9512 | MorphNet 2.0 4.0 0.9709
4.0 16.0 0.9493 4.0 16.0 0.9681
8.0 63.7 0.9461 8.0 63.7 0.9590
16.0 253.7 0.9376 16.0 253.7 0.9396
Ours 2.0 3.1 0.9536
4.0 16.7 0.9543
8.0 65.1 0.9567
16.1 156.7 0.9534




6.4. TinyImageNet

Method  V factor F factor Test Accu. | Method V factor F factor Test Accu.
Random 2.0 4.0 0.4825 | Ours 2.0 4.0 0.5235
4.0 16.0 0.4608 4.0 16.0 0.5198

8.0 63.7 0.3941 8.0 63.7 0.5140

16.0 253.7 0.2953 16.0 253.7 0.5196

vVQ 2.5 6.2 0.4896 | LZR 34 38.8 0.5034
4.2 18.0 0.4993 4.0 55.3 0.5001

8.0 64.3 0.4842 5.5 73.8 0.4971

16.0 255.9 0.3926 9.6 108.3 0.4903

WM 2.0 4.0 0.4901 | IB 2.0 3.9 0.4445
4.0 16.0 0.4967 4.2 18.0 0.4282

8.0 63.7 0.4772 6.4 41.3 0.3757

16.0 253.7 0.4019 12.7 161.7 0.3513

ID 2.0 4.0 0.4996 | MorphNet 2.0 4.0 0.5815
4.0 16.0 0.4955 4.0 16.0 0.5577

8.0 63.7 0.4577 8.0 63.7 0.5169

16.0 253.7 0.3972 16.0 253.7 0.3919

7. Pruning Results

In Fig. 1, we show pruning results of our method on TinyImageNet, CIFAR-100, and Mio-TCD (result
on CIFAR-10 is in the paper).

. Full 8x

Illlll 2x . 16x
4

|'|I|I" IIlll"lll'll

"lll . Full 8x s
10
L]} 2x . 16x

- -
I I 10!

Lkl L | ] I - Full 8x 1 II
Ill ] 2x - 16x | 10°
4x
I | I bl

11 12131421 22232431 323334 L1 12131421 22232431 323334 L1 121321 22232431 323334353641 4243
Convolution modules (labeled by block) Convolution modules (labeled by block) Convolution modules (labeled by block)

(a) WideResNet-TinyImageNet (b) WideResNet-CIFAR-100 (c) ResNet-Mio-TCD

Activation volume

Figure 1: Result of pruning with our method. Total number of active neurons in the full networks and
with four different pruning rates. Sections without an orange (8x) or red (16x) bar are those for which a
res-Block has been eliminated.

8. Sensitivity Analysis

Here we show sensitivity analysis results for our method on all 4 datasets. For each of the 4 pruning
factors, we run 10 experiments, where we sample the value of 7 hyperparameters from a uniform dis-
tribution centered around their tuned value. Depending on the scale of the parameter, the width of the
interval is either 1075, 0.2, or 1.0. We have plotted the results of this analysis in Fig. 2, using the data
shown in Table 1. As one can see, our method is not over sensitive to changes of its hyperparameters.
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Figure 2: Sensitivity analysis with error bars

V Factor  Test Accuracy Std dev. V Factor  Test Accuracy Std dev.
2 0.9271 0.001915 2 0.7412 0.002384
4 0.9276 0.001674 4 0.7379 0.004185
8 0.9227 0.002244 8 0.7265 0.002860
16 0.9132 0.002552 16 0.7047 0.003129
(a) CIFAR-10 (b) CIFAR-100

V Factor  Test Accuracy Std dev. V Factor  Test Accuracy Std dev.
2 0.9554 0.001222 2 0.5254 0.003548
4 0.9543  0.002039 4 0.5193 0.003017
8 0.9548 0.001631 8 0.5206 0.005651
16 0.9531 0.000903 16 0.5172  0.002984

(¢) Mio-TCD (d) TinyImageNet

Table 1: Sensitivity analysis data

9. Dropout Sparsity Learning with the Hard Concrete Distribution
We describe the Hard Concrete distribution, and how it can be used for Dropout Sparsity Learning.

9.1. The Hard Concrete Distribution

The Hard Concrete distribution [22] (HC) is a modification of the Binary Concrete distribution (BC),
which in turn is a special case of the Concrete distribution from Maddison et al. (2017). The BC is
a continuous relaxation of the Bernouilli distribution. The HC has the advantage of allowing to put
significant mass on P(z = 0), where z € [0, 1] is the relevance of a neuron (or group of neurons). We
are interested in drawing samples z from the HC, which can be done by using z = Qﬁé (€|p), where Q1
is the inverse cumulative distribution function (ICDF) and € ~ U/(0, 1). Fig. 3 compares the probability
density functions (PDF) and ICDF of the BC and the HC distributions.

The PDF ¢pc(s|¢) and CDF Qpc(s|¢) of the BC have parameters ¢ := (o, 3) and are defined as
follows:

—B-1(] _ g)-B-1

QBc(s|¢) = Sigmoid((log s — log(1 — 5))8 — log ). 3)

To obtain the HC, we stretch the domain of g to the (7, ) interval, with v < 0 and ¢ > 1. Since
this stretching operation results in some probability mass being outside [0, 1], we assign the mass of
[v,0] and [1,¢] to P(z = 0) and P(z = 1), respectively. For example, with logax = 0, P(z = 0) =
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Figure 3: Comparison of the BC and the HC distributions. The parameters (3,7, are set to
2/3,-0.1,1.1.

P(z =1) =~ 0.23. The resulting PDF is better understood visually (c.f. Fig. 3). The HC distribution has
parameters ¢ := («, 3,7, (), and we set 3,7, to 2/3,—0.1, 1.1 for all our experiments, as per [22].

For our purposes, we only need to draw samples for the HC, which can be done with its inverse CDF.
In our experiments, we use the following formula, given by [22] :

loge — log(1 — €) + log «
B

Quc(elg) = Clampy, , [Sigmoid < > (C—7)+ ’y] . @)

9.2. The Hard Concrete Sparsity Loss

We define our sparsity loss as the expectation of the Ly norm of the set of all dropout variables z. We
replace this discrete norm by a continuous relaxation Lyc(®P), where ® := {¢;} and ¢ := («, 3,7,() :

Luc(®) = Y Ps(z>0) = > (1 - Quc(0l¢)) = Y Sigmoid(loga — flog —) (5
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