
Supplementary Materials for
“Structured Pruning of Neural Networks

with Budget-Aware Regularization”

1. Sigmoidal Transition Function
The sigmoidal transition function of Section 3.4 is defined as follows:

T (t, d) =
Sigmoid(d(t− 0.5))− δ

1− 2δ

δ = Sigmoid(−0.5d)

(1)

where d controls the “hardness” of the sigmoid curve. d → 0 gives a linear transition, and d → ∞
gives a hard sigmoid. d = 10 was found empirically to be effective. The sigmoid must be shifted by δ
and scaled by (1− 2δ) so that T (0, d) = 0 and T (1, d) = 1.

2. Mixed Block Implementation
In Algorithm 1 below, we present an implementation for the atypical connectivity presented in Figure

4 of the paper. While the input and delta tensors have the same number of prunable features, they
can have a different pruning mask. We use indexing operations to exclude pruned features from the
computations.

Note that, in the case where the block is responsible of performing a downsampling of the input tensor
(or augmenting the number of features, or both), the residual connection is not an identity function;
rather, it is a convolution fres(·) that can have pruned features.

Algorithm 1: Forward Pass for the Mixed Block
Data:
xin : Input tensor of size (batch size,n features,height,width)
f∆(·) : Delta branch function
iin : Indices of alive features in input tensor
i∆ : Indices of alive features in delta tensor
fres(·) : Residual branch function (can be ∅ if identity connection)
ires : Indices of alive features in output of residual function (if fres(·) 6= ∅)
Nres : Number of output features of unpruned residual function (if fres(·) 6= ∅)
Result: xout : Output tensor

1 xalive ⇐ xin[:, iin, :, :]
2 if fres(·) = ∅ then
3 xout ⇐ iin

4 else
5 xres ⇐ fres(xalive)
6 height,width⇐ get height(xres), get width(xres)
7 xout ⇐ zeros(batch size, Nres,height,width)
8 xout[:, ires, :, :]⇐ xres

9 ∆⇐ f∆(xalive)
10 xout[:, i∆, :, :]⇐ xout[:, i∆, :, :] + ∆

3. Training Schedules
Here, we give details about the number of epochs used for each training phase and for each method.

1

3.1. Training Schedule for LZR, IB, MorphNet and Our Method

LZR[22], IB[1] and Ours For CIFAR-10 and CIFAR-100, we first train for 80 epochs. Then, the
network is “hard-pruned” using the algorithm associated to the pruning method. Next, we freeze Φ, and
we train for 40 additional epochs. Finally, we reduce the learning rate from 10−3 to 10−4 and train for
10 more epochs. For Mio-TCD, we shorten the three stages to (40, 20, 10) epochs (this dataset is∼ 10×
larger). For Mio-TCD only, we initialize the weights to those of the full (unpruned) network (c.f. Section
3.3).

MorphNet[9] For CIFAR-10 and CIFAR-100, we first train for 60 epochs. Then, the network is
“hard-pruned” using the algorithm proposed by the original paper. Next, we train for 50 additional
epochs. Finally, we reduce the learning rate from 10−3 to 10−4 and train for 20 more epochs. For
Mio-TCD, we shorten the three stages to (40, 20, 10) epochs.

3.2. Pruning Scheme for Random, VM, VQ and ID

For Random, WM[10], VQ[8], and ID[6,16], we implemented the following pruning scheme which
revealed to be effective and efficient:

1. Perform initial training of the full network for 40 epochs;

2. Reduce learning rate and continue training for 10 epochs;

3. Prune 50% of the network’s volume V ;

4. Train the network again with high learning rate, for 40 epochs;

5. Reduce learning rate and continue training for 10 epochs;

6. Record the network performance for the current pruning factor;

7. Return to 3 for the remaining pruning steps.

This scheme leads to four pruning factors: 2, 4, 8, 16.

3.3. Training Schedule for the Full (Unpruned) Networks

For CIFAR-10 and CIFAR-100, we trained for 80 epochs at learning rate 10−3, and 10 more epochs
at learning rate 10−4. For Mio-TCD, a dataset ∼ 10× larger, we trained for 40 epochs at high learning
rate and 10 epochs at low learning rate.

4. Initialization of Dropout Sparsity Parameters Φ
For LZR, where Φ := {αl}, we initialized all α from a uniform distribution U(0, 0.01). We did

not observe a significant change between using U(0, 0.01) or N (0, 0.012) (the initialization distribution
suggested by [22]). Our method has the same Φ and initialization scheme than LZR[22]. For IB, where
Φ := {µl, σl}, we initialized the parameters from Gaussian distributions: µ ∼ N (1, 0.012), log σ ∼
N (−9, 0.012) (values obtained by personal communication with the authors [1]).

5. Impact of Mixed-Connectivity Block on Metrics
Here we compare the objective metrics (i.e. Activation Volume V and FLOP) when the regular

Resblock is used and when our Mixed-Connectivity block is used. These are the results obtained from
our method (BAR). ∆ is the relative difference to the results for the Regular block. The following three
tables provide further details to Table 2 in the paper.

5.1. CIFAR-10

Activation Volume (V) FLOP
Pruning Factor Regular Mixed ∆ Regular Mixed ∆

2 1.79E+06 1.58E+06 -12% 2.71E+09 2.35E+09 -13%
4 1.37E+06 7.88E+05 -43% 1.51E+09 9.49E+08 -37%
8 8.43E+05 3.93E+05 -53% 8.06E+08 4.46E+08 -45%

16 4.67E+05 1.97E+05 -58% 4.20E+08 2.20E+08 -48%

2

5.2. CIFAR-100

Activation Volume (V) FLOP
Pruning Factor Regular Mixed ∆ Regular Mixed ∆

2 1.84E+06 1.58E+06 -14% 2.68E+09 2.29E+09 -15%
4 1.53E+06 7.88E+05 -49% 1.85E+09 1.10E+09 -40%
8 8.76E+05 3.93E+05 -55% 1.08E+09 6.03E+08 -44%

16 4.59E+05 1.97E+05 -57% 6.21E+08 3.27E+08 -47%

5.3. Mio-TCD

Activation Volume (V) FLOP
Pruning Factor Regular Mixed ∆ Regular Mixed ∆

2 2.66E+06 1.81E+06 -32% 1.15E+09 8.33E+08 -28%
4 1.45E+06 9.07E+05 -37% 2.50E+08 1.56E+08 -38%
8 7.51E+05 4.54E+05 -40% 6.87E+07 3.98E+07 -42%

16 4.70E+05 2.26E+05 -52% 3.31E+07 1.66E+07 -50%

6. Pruning Results
Here we give the numbers that we used to plot the curves of Figures 6 and 8. All methods prune ac-

cording to the Activation Volume V , except for “Ours (F-trained)”, which prunes with a FLOP reduction
objective. Please note that results with a volume factor greater than 16 have not been included.

6.1. CIFAR-10

Method V factor F factor Test Accu. Method V factor F factor Test Accu.
Random 2.0 4.0 0.8963 LZR 1.1 1.2 0.9182

4.0 16.0 0.8802 2.1 5.3 0.9204
8.0 64.0 0.8462 4.3 38.1 0.9210

16.0 255.8 0.8136 7.3 62.0 0.9171
VQ 3.1 9.4 0.9124 15.8 167.4 0.8970

4.6 21.0 0.9089 IB 1.3 1.8 0.9085
8.1 64.9 0.8862 1.3 1.8 0.9128

16.0 256.7 0.8459 2.3 5.2 0.9097
WM 2.0 4.0 0.9111 5.8 38.6 0.9048

4.0 16.0 0.9120 7.4 79.9 0.9014
8.0 64.0 0.8968 9.5 113.7 0.8965

16.0 255.8 0.8633 15.2 196.4 0.8795
ID 2.0 4.0 0.9109 MorphNet 2.0 4.0 0.9325

4.0 16.0 0.9144 4.0 16.0 0.9289
8.0 64.0 0.9037 † 7.9 64.0 0.9066

16.0 255.8 0.8692 † 15.8 255.8 0.8643
Ours 2.0 6.4 0.9270 Ours 1.7 4.0 0.9395

4.0 15.9 0.9278 (F-trained) 2.9 16.0 0.9350
† 7.9 33.8 0.9280 4.4 † 63.9 0.9217
† 15.8 68.5 0.9162 6.1 256.0 0.9010

The results marked with a dagger (†) are slightly below target because of a slight miscalculation of the total volume and of the
budget; this has since been fixed in our implementation.

3

6.2. CIFAR-100

Method V factor F factor Test Accu. Method V factor F factor Test Accu.
Random 2.0 4.0 0.6751 LZR 1.0 1.1 0.7201

4.0 16.0 0.6364 2.0 6.0 0.7039
8.0 64.0 0.5922 3.0 31.9 0.7152

16.0 255.8 0.4888 6.6 57.5 0.7075
VQ 2.5 9.4 0.6963 13.0 110.6 0.6728

4.3 21.0 0.6927 IB 1.2 1.5 0.7127
8.0 64.9 0.6703 1.3 1.8 0.7093

16.0 256.7 0.5899 2.0 3.1 0.7079
WM 2.0 4.0 0.6898 4.8 24.9 0.6508

4.0 16.0 0.6910 6.3 58.5 0.6905
8.0 64.0 0.6542 8.8 94.3 0.5709

16.0 255.8 0.5899 12.7 148.5 0.5671
ID 2.0 4.0 0.6929 MorphNet 2.0 4.0 0.7359

4.0 16.0 0.6975 4.0 16.0 0.7042
8.0 64.0 0.6603 † 7.9 64.0 0.6494

16.0 255.8 0.5913 † 15.8 255.8 0.5549
Ours 2.0 6.6 0.7408

4.0 13.7 0.7359
† 7.9 25.0 0.7259
† 15.8 46.2 0.7053

The dagger (†) has the same meaning as in the previous table.

6.3. Mio-TCD

Method V factor F factor Test Accu. Method V factor F factor Test Accu.
Random 2.0 4.0 0.9417 LZR 1.0 1.0 0.9521

4.0 16.0 0.9330 1.0 1.0 0.9509
8.0 63.7 0.9191 1.0 1.0 0.9524

16.0 253.7 0.9119 1.6 2.9 0.9524
VQ 3.6 12.6 0.9504 3.8 14.8 0.9507

5.5 30.0 0.9472 11.7 201.6 0.9510
8.7 75.8 0.9448 IB 1.4 2.3 0.9509

16.3 266.3 0.9343 1.9 3.1 0.9516
WM 2.0 4.0 0.9497 7.5 57.3 0.9478

4.0 16.0 0.9507 11.5 145.0 0.9211
8.0 63.7 0.9488 14.2 192.6 0.9127

16.0 253.7 0.9406 15.2 232.6 0.9070
ID 2.0 4.0 0.9512 MorphNet 2.0 4.0 0.9709

4.0 16.0 0.9493 4.0 16.0 0.9681
8.0 63.7 0.9461 8.0 63.7 0.9590

16.0 253.7 0.9376 16.0 253.7 0.9396
Ours 2.0 3.1 0.9536

4.0 16.7 0.9543
8.0 65.1 0.9567

16.1 156.7 0.9534

4

6.4. TinyImageNet

Method V factor F factor Test Accu. Method V factor F factor Test Accu.
Random 2.0 4.0 0.4825 Ours 2.0 4.0 0.5235

4.0 16.0 0.4608 4.0 16.0 0.5198
8.0 63.7 0.3941 8.0 63.7 0.5140

16.0 253.7 0.2953 16.0 253.7 0.5196
VQ 2.5 6.2 0.4896 LZR 3.4 38.8 0.5034

4.2 18.0 0.4993 4.0 55.3 0.5001
8.0 64.3 0.4842 5.5 73.8 0.4971

16.0 255.9 0.3926 9.6 108.3 0.4903
WM 2.0 4.0 0.4901 IB 2.0 3.9 0.4445

4.0 16.0 0.4967 4.2 18.0 0.4282
8.0 63.7 0.4772 6.4 41.3 0.3757

16.0 253.7 0.4019 12.7 161.7 0.3513
ID 2.0 4.0 0.4996 MorphNet 2.0 4.0 0.5815

4.0 16.0 0.4955 4.0 16.0 0.5577
8.0 63.7 0.4577 8.0 63.7 0.5169

16.0 253.7 0.3972 16.0 253.7 0.3919

7. Pruning Results
In Fig. 1, we show pruning results of our method on TinyImageNet, CIFAR-100, and Mio-TCD (result

on CIFAR-10 is in the paper).

(a) WideResNet-TinyImageNet (b) WideResNet-CIFAR-100 (c) ResNet-Mio-TCD

Figure 1: Result of pruning with our method. Total number of active neurons in the full networks and
with four different pruning rates. Sections without an orange (8x) or red (16x) bar are those for which a
res-Block has been eliminated.

8. Sensitivity Analysis
Here we show sensitivity analysis results for our method on all 4 datasets. For each of the 4 pruning

factors, we run 10 experiments, where we sample the value of 7 hyperparameters from a uniform dis-
tribution centered around their tuned value. Depending on the scale of the parameter, the width of the
interval is either 10−5, 0.2, or 1.0. We have plotted the results of this analysis in Fig. 2, using the data
shown in Table 1. As one can see, our method is not over sensitive to changes of its hyperparameters.

5

2 4 8 16
0.90

0.91

0.92

0.93

0.94
CIFAR-10

2 4 8 16
0.70

0.71

0.72

0.73

0.74

CIFAR-100

2 4 8 16
0.93

0.94

0.95

0.96

0.97
Mio-TCD

2 4 8 16
0.50

0.51

0.52

0.53

0.54
TinyImageNet

Figure 2: Sensitivity analysis with error bars

V Factor Test Accuracy Std dev.
2 0.9271 0.001915
4 0.9276 0.001674
8 0.9227 0.002244

16 0.9132 0.002552
(a) CIFAR-10

V Factor Test Accuracy Std dev.
2 0.7412 0.002384
4 0.7379 0.004185
8 0.7265 0.002860

16 0.7047 0.003129
(b) CIFAR-100

V Factor Test Accuracy Std dev.
2 0.9554 0.001222
4 0.9543 0.002039
8 0.9548 0.001631

16 0.9531 0.000903
(c) Mio-TCD

V Factor Test Accuracy Std dev.
2 0.5254 0.003548
4 0.5193 0.003017
8 0.5206 0.005651

16 0.5172 0.002984
(d) TinyImageNet

Table 1: Sensitivity analysis data

9. Dropout Sparsity Learning with the Hard Concrete Distribution
We describe the Hard Concrete distribution, and how it can be used for Dropout Sparsity Learning.

9.1. The Hard Concrete Distribution

The Hard Concrete distribution [22] (HC) is a modification of the Binary Concrete distribution (BC),
which in turn is a special case of the Concrete distribution from Maddison et al. (2017). The BC is
a continuous relaxation of the Bernouilli distribution. The HC has the advantage of allowing to put
significant mass on P (z = 0), where z ∈ [0, 1] is the relevance of a neuron (or group of neurons). We
are interested in drawing samples z from the HC, which can be done by using z = Q−1

HC(ε|φ), whereQ−1

is the inverse cumulative distribution function (ICDF) and ε ∼ U(0, 1). Fig. 3 compares the probability
density functions (PDF) and ICDF of the BC and the HC distributions.

The PDF qBC(s|φ) and CDF QBC(s|φ) of the BC have parameters φ := (α, β) and are defined as
follows:

qBC(s|φ) =
βαs−β−1(1− s)−β−1

(αs−β + (1− s)−β)2
(2)

QBC(s|φ) = Sigmoid((log s− log(1− s))β − logα). (3)

To obtain the HC, we stretch the domain of qBC to the (γ, ζ) interval, with γ < 0 and ζ > 1. Since
this stretching operation results in some probability mass being outside [0, 1], we assign the mass of
[γ, 0] and [1, ζ] to P (z = 0) and P (z = 1), respectively. For example, with logα = 0, P (z = 0) =

6

0.00 0.25 0.50 0.75 1.00
z

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Binary Concrete PDF

log α = -2
log α = 0
log α = 2

0.0 0.2 0.4 0.6 0.8 1.0
ε

0.0

0.2

0.4

0.6

0.8

1.0

z

Binary Concrete Inv. CDF

log α = -2
log α = 0
log α = 2

0.00 0.25 0.50 0.75 1.00
z

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Hard Concrete PDF

log α = -2
log α = 0
log α = 2

0.0 0.2 0.4 0.6 0.8 1.0
ε

0.0

0.2

0.4

0.6

0.8

1.0

z

Hard Concrete Inv. CDF

log α = -2
log α = 0
log α = 2

Figure 3: Comparison of the BC and the HC distributions. The parameters β, γ, ζ are set to
2/3,−0.1, 1.1.

P (z = 1) ≈ 0.23. The resulting PDF is better understood visually (c.f. Fig. 3). The HC distribution has
parameters φ := (α, β, γ, ζ), and we set β, γ, ζ to 2/3,−0.1, 1.1 for all our experiments, as per [22].

For our purposes, we only need to draw samples for the HC, which can be done with its inverse CDF.
In our experiments, we use the following formula, given by [22] :

Q−1
HC(ε|φ) = Clamp0,1

[
Sigmoid

(
log ε− log(1− ε) + logα

β

)
(ζ − γ) + γ

]
. (4)

9.2. The Hard Concrete Sparsity Loss

We define our sparsity loss as the expectation of the L0 norm of the set of all dropout variables z. We
replace this discrete norm by a continuous relaxation LHC(Φ), where Φ := {φi} and φ := (α, β, γ, ζ) :

LHC(Φ) =
∑
φ∈Φ

Pφ(z > 0) =
∑
φ∈Φ

(1−QHC(0|φ)) =
∑
φ∈Φ

Sigmoid(logα− β log
−γ
ζ

) (5)

7

