3D Appearance Super-Resolution with Deep Learning: Supplementary Material

Yawei Li¹, Vagia Tsiminaki², Radu Timofte¹, Marc Pollefeys^{2,3}, and Luc van Gool¹ ¹Computer Vision Lab, ETH Zurich, Switzerland {yawei.li, radu.timofte, vangool}@vision.ee.ethz.ch ²Computer Vision and Geometry Group, ETH Zurich, Switzerland ³Microsoft, USA {vagia.tsiminaki, marc.pollefeys}@inf.ethz.ch

1. Details of the Provided Dataset

1.1. Mesh, images, and projection matrices

The provided dataset has 24 different scenes in total including 13 from ETH3D, 6 from Collection, 3 from SyB3R, and 2 from Middlebury. Each scene contains a 3D mesh, multi-view images, and the corresponding projection matrices. The details of those scenes are provided in Table 1 including the mesh size, the number of vertices and faces in the mesh, the resolution of the HR images, and the number of views in the scene. It is shown in Table 1 that the scenes have different complexities,

Table 1: Details of the each of the scenes in the provided dataset including the size (MB) of the mesh, number of vertices and faces (k) in the mesh, the resolution of HR images, and the number of views in each scene.

Detect	Saana		Mesh	Image			
Dataset	Scelle	Mesh size	No. vertices	No. Faces	Resolution	No. Views	
ETH3D	courtyard	136.0	646	1,168	3096×2064	38	
	delivery_area	100.1	511	911	3096×2064	44	
	electro	32.7	164	293	3084×2052	45	
	facade	121.5	583	1,026	3096×2052	46	
	kicker	116.1	571	1,004	3096×2064	31	
	meadow	32.0	156	282	3096×2064	15	
	office	194.1	882	1,663	3108×2064	26	
	pipes	171.3	850	1,502	3108×2064	14	
	playground	44.8	233	367	3096×2064	38	
	relief	36.7	186	324	3096×2064	31	
	relief_2	58.5	299	519	3096×2064	31	
	terrace	52.0	327	421	3096×2064	23	
	terrains	55.5	265	495	3096×2064	42	
	Beethoven	16.0	74	144	1024×768	33	
	Bird	16.7	78	150	1024×768	20	
Collection	Buddha	16.5	75	150	1404×936	91	
Conection	Bunny	12.3	57	111	1024×768	36	
	Fountain	40.4	200	399	1280×1024	55	
	Relief	47.6	233	464	1280×1024	40	
Middlebury	DinoRing	143.2	619	1,237	640×480	48	
	TempleRing	85.2	369	737	640×480	47	
SyB3R	GeologicalSample	14.7	98	197	3888 × 2592	14	
	Skull	2.8	19	38	3888 × 2592	14	
	Toad	77	481	962	3888 × 2592	14	

i.e., different mesh size and number of vertices and faces.

1.2. Texture maps

Twelve of the 24 texture maps for different resolutions (HR, $\times 2$, $\times 3$, $\times 4$ down-sampling) are shown in Fig. 1, Fig. 2, and Fig. 3, respectively. By comparing the texture maps with different resolutions, we find that the ground truth texture maps contain more details than the LR ones. In addition, the HR texture maps are denser than the LR ones. Since optimal UV parameters exist for the synthetic scenes *GeologicalSample*, *Toad*, and *Skull*, their texture maps have less disconnected support regions.

2. SR Results

In Table 2 and Table 3, we show the PSNR and SSIM results of different methods. Apart from the methods in the main paper, the results of FSRCNN [2], SRResNet [3], and RCAN [4] are also provided. For FSRCNN, the pre-trained models provided by the authors are directly used. SRResNet, EDSR, and RCAN are trained on DIV2K [1]. More visual results of *relief, facade, Buddha*, and *Fountain* for different methods are shown in Fig. 4, Fig. 5, Fig. 6, and Fig. 7, respectively.

Table 2: The PSNR results of different methods for scaling factor $\times 2$, $\times 3$, and $\times 4$.

Mathad	ETH3D			Collection			Middlebury			SyB3R			Average		
Wiethou	$\times 2$	$\times 3$	$\times 4$	$\times 2$	$\times 3$	$\times 4$	×2	$\times 3$	$\times 4$	$\times 2$	$\times 3$	$\times 4$	$\times 2$	$\times 3$	$\times 4$
Nearest	19.06	16.71	14.68	24.22	19.7	16.92	10.08	7.93	7.08	30.84	27.88	25.82	21.07	18.12	16.0
Bilinear	20.61	18.24	16.32	26.2	21.48	18.84	11.87	8.88	7.77	31.75	28.83	26.9	22.67	19.6	17.56
Bicubic	20.21	17.96	15.88	25.67	21.12	18.29	11.32	8.81	7.73	31.77	28.78	26.73	22.28	19.34	17.16
Lanczos	20.01	17.74	15.69	25.42	20.86	18.07	11.14	8.81	7.81	31.71	28.7	26.63	22.09	19.15	17.0
HRST	16.18	-	16.12	32.29	-	29.63	22.13	-	20.88	27.9	-	26.34	22.17	-	21.17
HRST+	-	-	-	32.24	-	29.9	22.76	-	21.55	-	-	-	-	-	-
FSRCNN	18.09	15.02	13.75	23.58	18.16	16.36	9.62	7.73	7.43	30.23	26.35	25.01	20.27	16.61	15.29
SRRESNET	17.61	14.89	12.83	22.99	18.1	15.22	8.92	6.98	6.5	30.04	26.88	24.52	19.79	16.53	14.36
EDSR	16.75	14.08	12.03	21.77	17.2	14.24	8.49	7.13	6.61	29.31	26.18	23.81	18.89	15.79	13.61
RCAN	16.32	13.62	11.55	21.6	16.73	13.91	8.4	7.05	6.54	29.11	25.86	23.5	18.58	15.38	13.22
EDSR+	21.13	19.75	18.44	28.25	25.53	24.19	12.73	11.21	9.9	32.78	29.9	28.31	23.66	21.75	20.4
NLR-	21.21	20.11	19.2	28.08	25.0	23.27	14.68	12.37	11.11	32.18	28.84	26.64	23.75	21.78	20.47
NLR	21.31	20.27	19.18	28.38	25.85	24.84	13.67	12.92	12.29	32.57	29.57	27.67	23.85	22.22	21.08
NHR	25.19	23.95	22.7	30.25	28.41	26.27	17.16	17.21	15.63	30.57	27.42	24.39	26.46	24.94	23.22

Table 3: The SSIM results of different methods for scaling factor $\times 2$, $\times 3$, and $\times 4$.

Method	ETH3D			Collection			Middlebury				SyB3R		Average		
	$\times 2$	$\times 3$	$\times 4$	$\times 2$	$\times 3$	$\times 4$	$\times 2$	$\times 3$	$\times 4$	$\times 2$	$\times 3$	$\times 4$	$\times 2$	$\times 3$	$\times 4$
Nearest	0.81	0.74	0.68	0.88	0.77	0.7	0.54	0.43	0.39	0.91	0.84	0.79	0.82	0.74	0.67
Bilinear	0.83	0.77	0.71	0.91	0.81	0.75	0.57	0.45	0.41	0.92	0.86	0.81	0.84	0.77	0.71
Bicubic	0.83	0.76	0.7	0.9	0.8	0.73	0.56	0.45	0.41	0.92	0.86	0.81	0.84	0.76	0.7
Lanczos	0.82	0.75	0.68	0.9	0.79	0.71	0.55	0.45	0.4	0.92	0.86	0.81	0.83	0.75	0.68
HRST	0.67	-	0.66	0.96	-	0.93	0.92	-	0.9	0.88	-	0.82	0.79		0.77
HRST+	-	-	-	0.95	-	0.92	0.91	-	0.89	-	-	-	-]	-
FSRCNN	0.77	0.66	0.61	0.85	0.7	0.64	0.49	0.37	0.36	0.9	0.81	0.77	0.78	0.66	0.61
SRRESNET	0.78	0.7	0.63	0.86	0.74	0.66	0.5	0.41	0.38	0.91	0.84	0.78	0.79	0.7	0.64
EDSR	0.76	0.67	0.6	0.82	0.71	0.64	0.49	0.41	0.37	0.91	0.83	0.77	0.77	0.68	0.61
RCAN	0.75	0.66	0.58	0.84	0.7	0.63	0.49	0.4	0.37	0.9	0.83	0.77	0.77	0.67	0.6
EDSR+	0.86	0.83	0.79	0.94	0.91	0.88	0.62	0.51	0.45	0.93	0.88	0.84	0.87	0.83	0.79
NLR-	0.86	0.82	0.74	0.93	0.89	0.85	0.66	0.51	0.42	0.93	0.86	0.82	0.87	0.82	0.75
NLR	0.86	0.83	0.8	0.94	0.91	0.89	0.65	0.58	0.54	0.93	0.87	0.83	0.87	0.83	0.8
NHR	0.84	0.89	0.84	0.87	0.93	0.85	0.74	0.77	0.72	0.82	0.85	0.72	0.84	0.88	0.82

References

- E. Agustsson and R. Timofte. NTIRE 2017 challenge on single image super-resolution: Dataset and study. In Proc. CVPRW, July 2017. 2
- [2] C. Dong, C. C. Loy, and X. Tang. Accelerating the super-resolution convolutional neural network. In ECCV, pages 391–407. Springer, 2016. 2

Figure 1: The texture maps of *courtyard*, *delivery_area*, *pipes*, and *terrace* for different resolutions.

[3] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proc. CVPR, volume 2, page 4, 2017. 2

Figure 2: The texture maps of terrains, Skull, GeologicalSample, and DinoRing for different resolutions.

[4] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu. Image super-resolution using very deep residual channel attention networks. In Proc. ECCV, pages 286–301, 2018. 2

Figure 3: The texture maps of Bird, Buddha, Bunny, and Fountain for different resolutions.

Nearest

Bilinear

SRResNet

Lanczos

FSRCNN

NLR-Sub

NLR

NHR

Figure 4: Texture map SR results of *relief* by different methods.

Nearest

Bilinear

Lanczos

FSRCNN

SRResNet

EDSR

EDSR-FT

Figure 5: Texture map SR results of *facade* by different methods.

Nearest

Bilinear

Lanczos

FSRCNN

SRResNet

NLR-Sub

NHR

Figure 6: Texture map SR results of *Buddha* by different methods.

Nearest

Bilinear

Lanczos

FSRCNN

SRResNet

NLR-Sub

NLR

NHR

Figure 7: Texture map SR results of *Fountain* by different methods.