
Object-driven Text-to-Image Synthesis via Adversarial Training
1. Comparison between Obj-GAN and the Ablative Versions

In this section, we show more images generated by our Obj-GAN and its ablative versions on the COCO dataset. There
are more comparisons between the cases with or without spectral normalization in the discriminators, which can be found
that there are no obvious improvement on the visual quality when we choose to use the spectral normalization.

2. Attention Maps Generated by P-AttnGAN and Obj-GAN
We visualize more attention maps generated by P-AttnGAN and Obj-GAN as the supplementary for Figure 8 in the

submission.

3. Results of Obj-GAN based on the Ground-truth Boxes and Shapes

(1) A glass table with a bottle
and glass of wine next to a chair.

(2) A train sitting on some
tracks next to a sidewalk.

(3) Soccer player wearing green
and orange hitting soccer ball.

(4) A kitchen with a very messy
counter space.

(5) The people are on the beach
getting ready to surf.

(6) A jet airliner waits its turn
on the runway.

(7) Two cows are grazing in a
dirt field.

(8) A small lightweight airplane
flying through the sky.

(9) A cow running in a field next
to a dog.

(10) Two people go into the wa-
ter with their surfboards.

(11) A man in a helmet jumps a
snowboard.

(12) A giraffe is standing al-
l alone in a grassy area.

(13) The black dog is staring at
the cat.

(14) A bunch of sheep are s-
tanding in a field.

(15) A bench sitting on top of a
lush green hillside.

(16) A polar bear playing in the
water at a wild life enclosure.

(17) A man on a soccer field
next to a ball.

(18) A dog sitting on a bench in
front of a garden.

(19) A black cat drinking water
out of a water faucet.

(20) A cat laying on a TV in the
middle of the room.

(21) Four people on skis below
a mountain taking a picture.

(22) A man in outdoor winter
clothes holds a snowboard.

(23) A orange before and after
it was cu.

(24) A dog running with a fris-
bee in its mouth.

(25) A woman and a dog tussle
over a frisbee.

(26) Man in a wetsuit on top of
a blue and white surfboard.

(27) A white ship sails in the
blue ocean water.

(28) A couple of men standing
next to dogs near water.

(29) A man on a motorcycle in
a carport.

(30) A group of people riding
horses on a beach.

(31) A hipster wearing flood
pants poses with his skateboard.

(32) A black dog holding a fris-
bee in its mouth.

(33) A big boat on the water n-
ear the shore.

(34) All the horses in the pen
are grazing.

(35) A man riding a bike down
the middle of a street.

(36) A bathroom with a sink and
a toilet.

(37) A yellow school bus
parked near a tree.

(38) A group of cows graze on
some grass.

(39) A ship is sailing across an
ocean filled with waves.

(40) Three skiers posing for a
picture on the slope.

(41) A large green bus ap-
proaching a bus stop.

(42) A close view of a pizza,
and a mug of beer.

(43) A cat is looking at a televi-
sion displaying a dog in a cage.

(44) Three white sinks in a bath-
room under mirrors.

(45) Three cranes standing on
one leg in the water.

(46) A bear lying on a rock in
its den, looking upward.

(47) Two bottles of soda sit near
a sandwich.

(48) Someone on a snowboard
coming to a stop.

4. Bi-LSTM Text Encoder, DAMSM and R-precision
We use the deep attentive multi-modal similarity model (DAMSM) proposed in [7], which learns a joint embedding of

the image regions and words of a sentence in a common semantic space. The fine-grained conditional loss enforces the
sub-region of the generated image to match the corresponding word in the sentence.

Bi-LSTM text encoder serves as the text encoder for both DAMSM and the box generator (see § 5). Bi-LSTM text
encoder is a bi-directional LSTM [5] that extracts semantic vectors from the text description. In the Bi-LSTM, each word
corresponds to two hidden states, one for each direction. Thus, we concatenate its two hidden states to represent the semantic
meaning of a word. The feature matrix of all words is indicated by ė ∈ RD×Ts . Its ith column ėi is the feature vector for
the ith word. D is the dimension of the word vector and Ts is the number of words. Meanwhile, the last hidden states of
the bi-directional LSTM are concatenated to be the global sentence vector, denoted by ê ∈ RD. We present the network
architectures for the Bi-LSTM text encoder in Table 1.

Table 1: The architecture of Bi-LSTM text encoder.

Layer Name Hyperparameters
Embedding num embeddings = vocab size, embedding dim = 300

Dropout prob = 0.5

LSTM input size = 300, hidden size (D
2
) = 128, num layers = 1, dropout prob = 0.5, bidirectional = True

The image encoder is a convolutional neural network that maps images to semantic vectors. The intermediate layers
of the CNN model learns local features of different regions of the image, while the later layers learn global features of the
image. More specifically, the image encoder is built upon Inception-v3 model [6] pre-trained on ImageNet [4]. We first
rescale the input image to be 299×299 pixels. And then, we extract the local feature matrix f ∈ R768×289 (reshaped from
768×17×17) from “mixed 6e” layer of Inception-v3. Each column of f is the feature vector of a local image region. 768
is the dimension of the local feature vector, and 289 is the number of regions in the image. Meanwhile, the global feature
vector f ∈ R2048 is extracted from the last average pooling layer of Inception-v3. Finally, we convert the image features to
the common semantic space of text features by adding a new layer perceptron as shown in Eq. (1),

v = Wf ; v = W f, (1)

where v ∈ RD×289 and its ith column vi is the visual feature vector for the ith image region; v ∈ RD is the visual feature
vector for the whole image. While vi is the local image feature vector that corresponds to the word embedding, v is the
global feature vector that is related to the sentence embedding. D is the dimension of the multimodal (i.e., image and text
modalities) feature space. For efficiency, all parameters in layers built from Inception-v3 model are fixed, and the parameters
in newly added layers are jointly learned with the rest of networks.

The fine-grained conditional loss is designed to learn the correspondence between image regions and words. However,
it is difficult to obtain manual annotations. Actually, many words relate to concepts that may not easily be visually defined,
such as open or old. One possible solution is to learn word-image correspondence in a semi-supervised manner, in which the
only supervision is the correspondence between the entire image and the whole text description (a sequence of words).

We can first calculate the similarity matrix between all possible pairs of word and image region by Eq. (2),

s = ėT v, (2)

where s ∈ RT×289 and si,j means the similarity between the ith word and the jth image region.
Generally, a sub-region of the image is described by none or several words of the text description, and it is not likely to be

described by the whole sentence. Therefore, we normalize the similarity matrix by Eq. (3),

si,j =
exp(si,j)∑T−1
k=0 exp(sk,j)

(3)

Second, we build an attention model to compute a context vector for each word (query). The context vector ci is a dynamic
representation of image regions related to the ith word of the text description. It is computed as the weighted sum over all
visual feature vectors,

ci =

288∑
j=0

αjvj , (4)

where we define the weight αj via Eq. (5),

αj =
exp(γ1si,j)∑288
k=0 exp(γ1si,k)

(5)

Here, γ1 is a factor that decides how much more attention is paid to features of its relevant regions when computing the
context vector for a word.

Finally, we define the relevance between the ith word and the image using the cosine similarity between ci and ėi, i.e.,
R(ci, ėi) = (cTi ėi)/(||ci||||ėi||). The relevance between the entire image (Q) and the whole text description (U) is computed
by Eq. (6),

R(Q,U) = log
(T−1∑
i=1

exp(γ2R(ci, ėi))
) 1
γ2
, (6)

where γ2 is a factor that determines how much to magnify the importance of the most relevant word-image pair. When
γ2 →∞, R(Q,U) approximates to maxT−1i=1 R(ci, ėi).

For a text-image pair, we can compute the posterior probability of the text description (U) being matching with the image
(Q) via,

P (U |Q) =
exp(γ3R(Q,U))∑

U ′∈U exp(γ3R(Q,U ′))
, (7)

where γ3 is a smoothing factor determined by experiments. U denotes a minibatch of M text descriptions, in which only one
description U+ matches the image Q. Thus, for each image, there are M − 1 mismatching text descriptions. The objective
function is to learn the model parameters Λ by minimizing the negative log posterior probability that the images are matched
with their corresponding text descriptions (ground truth),

Lw1 (Λ) = − log
∏
Q∈Q

P (U+|Q), (8)

where ‘w’ stands for “word”.
Symmetrically, we can compute,

Lw2 (Λ) = − log
∏
U∈U

P (Q+|U), (9)

where P (Q|U) = exp(γ3R(Q,U))∑
Q′∈Q exp(γ3R(Q′,U)) .

If we redefine Eq. (6) by R(Q,U) =
(
vT ê

)
/
(
||v||||ê||

)
and substitute it to Eq. (7),Eq. (8), Eq. (9), we can obtain loss

functions Ls1 and Ls2 (where ‘s’ stands for “sentence”) using the sentence embedding ê and the global visual vector v.
The fine-grained conditional loss is defined via Eq. (10),

LDAMSM = Lw1 + Lw2 + Ls1 + Ls2 (10)

The DAMSM is pre-trained by minimizing LDAMSM using real image-text pairs. Since the size of images for pre-training
DAMSM is not limited by the size of images that can be generated, real images of size 299×299 are utilized. Furthermore,
the pre-trained DAMSM can provide visually-discriminative word features and a stable fine-grained conditional loss for the
attention generative network.

The R-precision score. The DAMSM model is also used to compute the R-precision score. If there are R relevant
documents for a query, we examine the top R ranked retrieval results of a system, and find that r are relevant, and then by
definition, the R-precision (and also the precision and recall) is r/R. More specifically, we use generated images to query
their corresponding text descriptions. First, the image encoder and Bi-LSTM text encoder learned in our pre-trained DAMSM
are utilized to extract features of the generated images and the given text descriptions. Then, we compute cosine similarities
between the image features and the text features. Finally, we rank candidates text descriptions for each image in descending
similarity and find the top r relevant descriptions for computing the R-precision.

5. Network Architectures for Semantic Layout Generation
Box generator. We design our box generator by improving the one in [1] to be attentive. We denote the bounding box of

the t-th object as Bt = (bxt , b
y
t , b

w
t , b

h
t , lt). Then, we formulate the joint probability of sampling Bt from the box generator as

p(bxt , b
y
t , b

w
t , b

h
t , lt) = p(lt)p(b

x
t , b

y
t , b

w
t , b

h
t |lt). (11)

We implement p(lt) as a categorical distribution, and implement p(bxt , b
y
t , b

w
t , b

h
t |lt) as a mixture of quadravariate Gaussians.

As described in [1], in order to reduce the parameter space, we decompose the box coordinate probability as p(bxt , b
y
t , b

w
t , b

h
t |lt) =

p(bxt , b
y
t |lt)p(bwt , bht |bxt , b

y
t , lt), and approximate it with two bivariate Gasussian mixtures by

p(bxt , b
y
t |lt) =

K∑
k=1

πxyt,kN (bxt , b
y
t ;µxyt,k,Σ

xy
t,k), (12)

p(bwt , b
h
t |bxt , b

y
t , lt) =

K∑
k=1

πwht,kN (bwt , b
h
t ;µwht,k ,Σ

wh
t,k). (13)

In practice, as in [1], we implement the box generator within a encoder-decoder framework. The encoder is the Bi-LSTM text
encoder as mentioned in § 4. The Gaussian Mixture Model (GMM) parameters for Eq. (11) are obtained from the decoder
LSTM outputs. Given text encoder’s final hidden state hEnc

Ts
∈ RD and output HEnc ∈ RTs×D, we initialize the decoder’s

initial hidden state h0 with hEnc
Ts

. As for HEnc, we use it to compute the contextual input zt for the decoder:

zt =

Ts∑
i=1

αih
Enc
i , with αi = Wv · (Wα[ht−1, h

Enc
i]), (14)

where Wv is a learnable parameter, Wα is the parameter of a linear transformation, and · and [·, ·] represent the dot product
and concatenation operation, respectively.

Then, the calculation of GMM parameters are shown as follows:

[ht, ct] = LSTM([Bt−1, zt]; [ht−1, ct−1]), (15)

lt = W lht + bl, (16)

θxyt = W xy[ht, lt] + bxy, (17)

θwht = Wwh[ht, lt, bx, by] + bwh, (18)

where θ·t = [π·t,1:K ,µ
·
t,1:K ,Σ

·
t,1:K] are the parameters for GMM concatenated to a vector. We use the same Adam optimizer

and training hyperparameters (i.e., learning rate 0.001, β1 = 0.9, β2 = 0.999) as in [1].
Shape generator. We implement the shape generator in [1] with almost the same architecture except the upsample block.

In [1], the upsample block is designed as [convtranspose 4 × 4 (pad 1, stride 2) - Instance Normalization - ReLU]. We
discovered that the usage of convtranspose would lead to unstable training which is reflected by the frequent severe grid
artifacts. To this end, we replace this upsample block with that in our image generator (see Table 2) by switching the batch
normalization to the instance one.

6. Network Architectures for Image Generation
We present the network architecture for image generators in Table 3 and the network architectures for discriminators in

Table 4, Table 5 and Table 6. They are built with basic blocks defined in Table 2. We set the hyperparameters of the network
structures as: Ng = 48, Nd = 96, Nc = 80, Ne = 256, Nl = 50, m0 = 7, m1 = 3, and m2 = 3.

We employ an Adam optimizer for the generators with learning rate 0.0002, β1 = 0.5 and β2 = 0.999. For each
discriminator, we also employ an Adam optimizer with the same hyperparameters.

We design the object-wise discriminators for small objects and large objects, respectively. We specify that if the maximum
of width or height of an object is greater than one-third of the image size, then this object is large; otherwise, it is small.

Table 2: The basic blocks for architecture design. (“-” connects two consecutive layers; “+” means element-wise addition between two layers.)

Name Operations / Layers
Interpolating (k) Nearest neighbor upsampling layer (up-scaling the spatial size by k)

Upsampling (k) Interpolating (2) - convolution 3× 3 (stride 1, padding 1, decreasing]channels to k) -
Batch Normalization (BN) - Gated Linear Unit (GLU).

Downsampling (k) In Gs: convolution 3× 3 (stride 2, increasing]channels to k) - BN - LeakyReLU.
In Ds, the convolutional kernel size is 4. In the first block of Ds, BN is not applied.

Downsampling w/ SN (k) Convolution 4× 4 (spectral normalized, stride 2, increasing]channels to k) - BN - LeakyReLU.
In the first block of Ds, BN is not applied.

Concat Concatenate input tensors along the channel dimension.

Residual Input + [Reflection Pad (RPad) 1 - convolution 3× 3 (stride 1, doubling]channels) -
Instance Normalization (IN) - GLU - RPad 1 - convolution 3× 3 (stride 1, keeping]channels) - IN].

FC At the beginning of Gs: fully connected layer - BN - GLU - reshape to 3D tensor.
FC w/ SN (k) Fully connected layer (spectral normalized, changing]channels to k).
Outlogits Convolution 4× 4 (stride 2, decreasing]channels to 1) - sigmoid.
Repeat (k × k) Copy a vector k × k times.
Fmap Sum Summing the two input feature maps element-wisely.
Fmap Mul Multiplying the two input feature maps element-wisely.
Avg Pool (k) Average pooling along the k-th dimension.

Conv 3× 3 (k)
In Gs: convolution 3× 3 (stride 1, padding 1, changing]channels to k) - Tanh.
In Ds, convolution 3× 3 (stride 1, padding 1, changing]channels to k) - BN - LeakyReLU.

Conv 4× 4 w/ SN Convolution 4× 4 (spectral normalized, stride 2, keeping]channels).
Conv 1× 1 w/ SN Convolution 1× 1 (spectral normalized, stride 1, decreasing]channels to 1).

F ca Conditioning augmentation that converts the sentence embedding ê to the conditioning vector e:
fully connected layer - ReLU.

F pat-attn Grid attention module. Refer to the paper for more details.
F obj-attn Object-driven attention module. Refer to the paper for more details.
F lab-distr Label distribution module. Refer to the paper for more details.
Shape Encoder (k) RPad 1 - convolution 3× 3 (stride 1, decreasing]channels to k) - IN - LeakyReLU.
Shape Encoder w/ SN (k) RPad 1 - convolution 3× 3 (spectral normalized, stride 1, decreasing]channels to k) - IN - LeakyReLU.
ROI Encoder Convolution 4× 4 (stride 1, padding 1, decreasing]channels to Nd ∗ 4) - LeakyReLU.
ROI Encoder w/ SN Convolution 4× 4 (spectral normalized, stride 1, padding 1, decreasing]channels to Nd ∗ 4) - LeakyReLU.
ROI Align (k) Pooling k × k feature maps for ROI.

Table 3: The structure for generators of Obj-GAN.

Stage Name Input Tensors Output Tensors

G0

FC 100-dimensional z, and F ca 8× 8× 4Ng

Upsampling (2Ng) 8× 8× 4Ng 16× 16× 2Ng

Upsampling (Ng) 16× 16× 2Ng c (32× 32×Ng)
Shape Encoder (1

2
Ng) M0 (64× 64×Nc) 64× 64× 1

2
Ng

Downsampling (Ng) 64× 64× 1
2
Ng u0 (32× 32×Ng)

Concat c, u0, F obj-attn, F lab-distr 32× 32× (3Ng +Nl)
m0 Residual 32× 32× (3Ng +Nl) 32× 32× (3Ng +Nl)
Upsampling (Ng) 32× 32× (3Ng +Nl) h0 (64× 64×Ng)
Conv 3× 3 (3) h0 x0 (64× 64× 3)

G1

Shape Encoder (1
2
Ng) M1 (128× 128×Nc) 128× 128× 1

2
Ng

Downsampling (Ng) 128× 128× 1
2
Ng u1 (64× 64×Ng)

Fmap Sum h0, u1 h0 (64× 64×Ng)
Concat F pat-attn, h0, F obj-attn, F lab-distr 64× 64× (3Ng +Nl)
m1 Residual 64× 64× (3Ng +Nl) 64× 64× (3Ng +Nl)
Upsampling (Ng) 64× 64× (3Ng +Nl) h1 (128× 128×Ng)
Conv 3× 3 (3) h1 x1 (128× 128× 3)

G2

Shape Encoder (1
2
Ng) M2 (256× 256×Nc) 256× 256× 1

2
Ng

Downsampling (Ng) 256× 256× 1
2
Ng u2 (128× 128×Ng)

Fmap Sum h1, u2 h1 (128× 128×Ng)
Concat F pat-attn, h1, F obj-attn, F lab-distr 128× 128× (3Ng +Nl)
m2 Residual 128× 128× (3Ng +Nl) 128× 128× (3Ng +Nl)
Upsampling (Ng) 128× 128× (3Ng +Nl) h2 (256× 256×Ng)
Conv 3× 3 (3) h2 x2 (256× 256× 3)

Table 4: The structure for patch-wise discriminators of Obj-GAN. e is output by F ca

Stage Name Input Tensors Output Tensors

D0

Downsampling (Nd) x0 (64× 64× 3) 32× 32×Nd

Downsampling (2Nd) 32× 32×Nd 16× 16× 2Nd

Downsampling (4Nd) 16× 16× 2Nd 8× 8× 4Nd

Downsampling (8Nd) 8× 8× 4Nd h0 (4× 4× 8Nd)
Repeat (4× 4) e (Ne) 4× 4×Ne

Concat - Conv 3× 3 (8Nd) h0, 4× 4×Ne he0 (4× 4× 8Nd)
Outlogits (unconditional loss) h0 1
Outlogits (conditional loss) he0 1

D1

Downsampling (Nd) x1 (128× 128× 3) 64× 64×Nd

Downsampling (2Nd) 64× 64×Nd 32× 32× 2Nd

Downsampling (4Nd) 32× 32× 2Nd 16× 16× 4Nd

Downsampling (8Nd) 16× 16× 4Nd h1 (8× 8× 8Nd)
Repeat (8× 8) e (Ne) 8× 8×Ne

Concat - Conv 3× 3 (8Nd) h1, 8× 8×Ne he1 (8× 8× 8Nd)
Outlogits (unconditional loss) h1 3× 3
Outlogits (conditional loss) he1 3× 3

D2

Downsampling (Nd) x2 (256× 256× 3) 128× 128×Nd

Downsampling (2Nd) 128× 128×Nd 64× 64× 2Nd

Downsampling (4Nd) 64× 64× 2Nd 32× 32× 4Nd

Downsampling (8Nd) 32× 32× 4Nd h2 (16× 16× 8Nd)
Repeat (16× 16) e (Ne) 16× 16×Ne

Concat - Conv 3× 3 (8Nd) h2, 16× 16×Ne he2 (16× 16× 8Nd)
Outlogits (unconditional loss) h2 7× 7
Outlogits (conditional loss) he2 7× 7

Table 5: The structure for shape discriminators of Obj-GAN.

Stage Name Input Tensors Output Tensors

D0

Shape Encoder (1
8
Nd) M0 (64× 64×Nc) 64× 64× 1

8
Nd

Concat x0 (64× 64× 3), 64× 64× 1
8
Nd 64× 64× (3 + 1

8
Nd)

Downsampling (Nd) 64× 64× (3 + 1
8
Nd) 32× 32×Nd

Downsampling (2Nd) 32× 32×Nd 16× 16× 2Nd

Downsampling (4Nd) 16× 16× 2Nd 8× 8× 4Nd

Downsampling (8Nd) 8× 8× 4Nd h0 (4× 4× 8Nd)
Outlogits (unconditional loss) h0 1

D1

Shape Encoder (1
8
Nd) M1 (128× 128×Nc) 128× 128× 1

8
Nd

Concat x1 (128× 128× 3), 128× 128× 1
8
Nd 128× 128× (3 + 1

8
Nd)

Downsampling (Nd) 128× 128× (3 + 1
8
Nd) 64× 64×Nd

Downsampling (2Nd) 64× 64×Nd 32× 32× 2Nd

Downsampling (4Nd) 32× 32× 2Nd 16× 16× 4Nd

Downsampling (8Nd) 16× 16× 4Nd h1 (8× 8× 8Nd)
Outlogits (unconditional loss) h1 3× 3

D2

Shape Encoder (1
8
Nd) M2 (256× 256×Nc) 256× 256× 1

8
Nd

Concat x2 (256× 256× 3), 256× 256× 1
8
Nd 256× 256× (3 + 1

8
Nd)

Downsampling (Nd) 256× 256× (3 + 1
8
Nd) 128× 128×Nd

Downsampling (2Nd) 128× 128×Nd 64× 64× 2Nd

Downsampling (4Nd) 64× 64× 2Nd 32× 32× 4Nd

Downsampling (8Nd) 32× 32× 4Nd h2 (16× 16× 8Nd)
Outlogits (unconditional loss) h2 7× 7

Table 6: The structure for object-wise discriminators of Obj-GAN. cobj represents the intermediate context vectors of F obj-attn, and eg represents the
embedding vectors the class labels.

Stage Name Input Tensors Output Tensors

small

Interpolating (2) M2 (256× 256×Nc) 512× 512×Nc

Interpolating (2) x2 (256× 256× 3) 512× 512× 3
Shape Encoder (1

8
Nd) 512× 512×Nc 512× 512× 1

8
Nd

Concat 512× 512× 3, 512× 512× 1
8
Nd 512× 512× (3 + 1

8
Nd)

Downsampling (Nd) 512× 512× (3 + 1
8
Nd) 256× 256×Nd

Downsampling (2Nd) 256× 256×Nd 128× 128× 2Nd

Downsampling (4Nd) 128× 128× 2Nd 64× 64× 4Nd

ROI Align (5) 64× 64× 4Nd Nsmall × 5× 5× 4Nd

ROI Encoder (5) Nsmall × 5× 5× 4Nd h (Nsmall × 4× 4× 4Nd)
Repeat (4× 4) cobj (Nsmall ×Ng) Nsmall × 4× 4×Ng

Repeat (4× 4) eg (Nsmall ×Nl) Nsmall × 4× 4×Nl

Concat - Conv 3× 3 (4Nd) h,Nsmall × 4× 4×Ng , Nsmall × 4× 4×Nl hc (Nsmall × 4× 4× 4Nd)
Outlogits (unconditional loss) h Nsmall
Outlogits (conditional loss) hc Nsmall

large

Interpolating (2) M2 (256× 256×Nc) 512× 512×Nc

Interpolating (2) x2 (256× 256× 3) 512× 512× 3
Shape Encoder (1

8
Nd) 512× 512×Nc 512× 512× 1

8
Nd

Concat 512× 512× 3, 512× 512× 1
8
Nd 512× 512× (3 + 1

8
Nd)

Downsampling (Nd) 512× 512× (3 + 1
8
Nd) 256× 256×Nd

Downsampling (2Nd) 256× 256×Nd 128× 128× 2Nd

Downsampling (4Nd) 128× 128× 2Nd 64× 64× 4Nd

Downsampling (8Nd) 64× 64× 4Nd 32× 32× 8Nd

ROI Align (5) 32× 32× 8Nd Nlarge × 5× 5× 8Nd

ROI Encoder (5) Nlarge × 5× 5× 8Nd h (Nlarge × 4× 4× 4Nd)
Repeat (4× 4) cobj (Nlarge ×Ng) Nlarge × 4× 4×Ng

Repeat (4× 4) eg (Nlarge ×Nl) Nlarge × 4× 4×Nl

Concat - Conv 3× 3 (4Nd) h,Nlarge × 4× 4×Ng , Nlarge × 4× 4×Nl hc (Nlarge × 4× 4× 4Nd)
Outlogits (unconditional loss) h Nlarge
Outlogits (conditional loss) hc Nlarge

(49) Object-wise discriminator. (50) Object-wise spectral normalized projection discriminator.

Figure 1: The comparison between the object-wise discriminator and its spectral normalized projection version. (a) extracts the region feature based on
the Fast R-CNN model. (b) determines whether the t-th object is realistic (consistent with its label eg

t and text context information c
obj
t) or not.

7. Network Architectures for Spectral Normalized Projection Discriminators
We combine our discriminators above with the spectral normalized projection discriminator in [2, 3]. The difference

between the object-wise discriminator and the object-wise spectral normalized projection discriminator is illustrated in Fig-
ure 1. We present detailed network architectures of the spectral normalized projection discriminators in Table 7, Table 8 and

Table 9, with basic blocks defined in Table 2.

Table 7: The structure for patch-wise spectral normalized projection discriminators of Obj-GAN. e is output by F ca

Stage Name Input Tensors Output Tensors

D0

Downsampling w/ SN (Nd) x0 (64× 64× 3) 32× 32×Nd

Downsampling w/ SN (2Nd) 32× 32×Nd 16× 16× 2Nd

Downsampling w/ SN (4Nd) 16× 16× 2Nd 8× 8× 4Nd

Downsampling w/ SN (8Nd) 8× 8× 4Nd 4× 4× 8Nd

Conv 4× 4 w/ SN 4× 4× 8Nd h0 (8Nd)
FC w/ SN (8Nd) e (Ne) c0 (8Nd)
Fmap Mul - Avg Pool (0) h0, c0 hc0 (1)
Conv 1× 1 w/ SN (unconditional loss) h0 ouncond

0 (1)
Fmap Sum (conditional loss) ouncond

0 , hc0 ocond
0 (1)

D1

Downsampling w/ SN (Nd) x1 (128× 128× 3) 64× 64×Nd

Downsampling w/ SN (2Nd) 64× 64×Nd 32× 32× 2Nd

Downsampling w/ SN (4Nd) 32× 32× 2Nd 16× 16× 4Nd

Downsampling w/ SN (8Nd) 16× 16× 4Nd 8× 8× 8Nd

Conv 4× 4 w/ SN 8× 8× 8Nd h1 (3× 3× 8Nd)
FC w/ SN (8Nd) e (Ne) 8Nd

Repeat (3× 3) 8Nd c1 (3× 3× 8Nd)
Fmap Mul - Avg Pool (2) h1, c1 hc1 (3× 3)
Conv 1× 1 w/ SN (unconditional loss) h1 ouncond

1 (3× 3)
Fmap Sum (conditional loss) ouncond

1 , hc1 ocond
1 (3× 3)

D2

Downsampling w/ SN (Nd) x2 (256× 256× 3) 128× 128×Nd

Downsampling w/ SN (2Nd) 128× 128×Nd 64× 64× 2Nd

Downsampling w/ SN (4Nd) 64× 64× 2Nd 32× 32× 4Nd

Downsampling w/ SN (8Nd) 32× 32× 4Nd 16× 16× 8Nd

Conv 4× 4 w/ SN 16× 16× 8Nd h2 (7× 7× 8Nd)
FC w/ SN (8Nd) e (Ne) 8Nd

Repeat (7× 7) 8Nd c2 (7× 7× 8Nd)
Fmap Mul - Avg Pool (2) h2, c2 hc2 (7× 7)
Conv 1× 1 w/ SN (unconditional loss) h2 ouncond

2 (7× 7)
Fmap Sum (conditional loss) ouncond

2 , hc2 ocond
2 (7× 7)

Table 8: The structure for shape spectral normalized projection discriminators of Obj-GAN.
Stage Name Input Tensors Output Tensors

D0

Shape Encoder w/ SN (1
8
Nd) M0 (64× 64×Nc) 64× 64× 1

8
Nd

Concat x0 (64× 64× 3), 64× 64× 1
8
Nd 64× 64× (3 + 1

8
Nd)

Downsampling w/ SN (Nd) 64× 64× (3 + 1
8
Nd) 32× 32×Nd

Downsampling w/ SN (2Nd) 32× 32×Nd 16× 16× 2Nd

Downsampling w/ SN (4Nd) 16× 16× 2Nd 8× 8× 4Nd

Downsampling w/ SN (8Nd) 8× 8× 4Nd 4× 4× 8Nd

Conv 4× 4 w/ SN 4× 4× 8Nd h0 (8Nd)
Conv 1× 1 w/ SN (unconditional loss) h0 1

D1

Shape Encoder w/ SN (1
8
Nd) M1 (128× 128×Nc) 128× 128× 1

8
Nd

Concat x1 (128× 128× 3), 128× 128× 1
8
Nd 128× 128× (3 + 1

8
Nd)

Downsampling w/ SN (Nd) 128× 128× (3 + 1
8
Nd) 64× 64×Nd

Downsampling w/ SN (2Nd) 64× 64×Nd 32× 32× 2Nd

Downsampling w/ SN (4Nd) 32× 32× 2Nd 16× 16× 4Nd

Downsampling w/ SN (8Nd) 16× 16× 4Nd 8× 8× 8Nd

Conv 4× 4 w/ SN 8× 8× 8Nd h1 (3× 3× 8Nd)
Conv 1× 1 w/ SN (unconditional loss) h1 3× 3

D2

Shape Encoder w/ SN (1
8
Nd) M2 (256× 256×Nc) 256× 256× 1

8
Nd

Concat x2 (256× 256× 3), 256× 256× 1
8
Nd 256× 256× (3 + 1

8
Nd)

Downsampling w/ SN (Nd) 256× 256× (3 + 1
8
Nd) 128× 128×Nd

Downsampling w/ SN (2Nd) 128× 128×Nd 64× 64× 2Nd

Downsampling w/ SN (4Nd) 64× 64× 2Nd 32× 32× 4Nd

Downsampling w/ SN (8Nd) 32× 32× 4Nd 16× 16× 8Nd

Conv 4× 4 w/ SN 16× 16× 8Nd h2 (7× 7× 8Nd)
Conv 1× 1 w/ SN (unconditional loss) h2 7× 7

Table 9: The structure for object-wise spectral normalized projection discriminators of Obj-GAN. cobj represents the intermediate context vectors of
F obj-attn, and eg represents the embedding vectors the class labels.

Stage Name Input Tensors Output Tensors

small

Interpolating (2) M2 (256× 256×Nc) 512× 512×Nc

Interpolating (2) x2 (256× 256× 3) 512× 512× 3
Shape Encoder w/ SN (1

8
Nd) 512× 512×Nc 512× 512× 1

8
Nd

Concat 512× 512× 3, 512× 512× 1
8
Nd 512× 512× (3 + 1

8
Nd)

Downsampling w/ SN (Nd) 512× 512× (3 + 1
8
Nd) 256× 256×Nd

Downsampling w/ SN (2Nd) 256× 256×Nd 128× 128× 2Nd

Downsampling w/ SN (4Nd) 128× 128× 2Nd 64× 64× 4Nd

ROI Align (5) 64× 64× 4Nd Nsmall × 5× 5× 4Nd

ROI Encoder w/SN (5) Nsmall × 5× 5× 4Nd Nsmall × 4× 4× 4Nd

Conv 4× 4 w/ SN Nsmall × 4× 4× 4Nd h (Nsmall × 4Nd)
Concat cobj (Nsmall ×Ng), eg (Nsmall ×Nl) Nsmall × (Ng +Nl)
FC w/ SN (4Nd) Nsmall × (Ng +Nl) c (Nsmall × 4Nd)
Fmap Mul - Avg Pool (1) h, c hc (Nsmall)
Conv 1× 1 w/ SN (unconditional loss) h ouncond (Nsmall)
Fmap Sum (conditional loss) ouncond, hc ocond (Nsmall)

large

Interpolating (2) M2 (256× 256×Nc) 512× 512×Nc

Interpolating (2) x2 (256× 256× 3) 512× 512× 3
Shape Encoder w/ SN (1

8
Nd) 512× 512×Nc 512× 512× 1

8
Nd

Concat 512× 512× 3, 512× 512× 1
8
Nd 512× 512× (3 + 1

8
Nd)

Downsampling w/ SN (Nd) 512× 512× (3 + 1
8
Nd) 256× 256×Nd

Downsampling w/ SN (2Nd) 256× 256×Nd 128× 128× 2Nd

Downsampling w/ SN (4Nd) 128× 128× 2Nd 64× 64× 4Nd

Downsampling w/ SN (8Nd) 64× 64× 4Nd 32× 32× 8Nd

ROI Align (5) 32× 32× 8Nd Nlarge × 5× 5× 8Nd

ROI Encoder w/ SN (5) Nlarge × 5× 5× 8Nd Nlarge × 4× 4× 4Nd

Conv 4× 4 w/ SN Nlarge × 4× 4× 4Nd h (Nlarge × 4Nd)
Concat cobj (Nlarge ×Ng), eg (Nlarge ×Nl) Nlarge × (Ng +Nl)
FC w/ SN (4Nd) Nlarge × (Ng +Nl) c (Nlarge × 4Nd)
Fmap Mul - Avg Pool (1) h, c hc (Nlarge)
Conv 1× 1 w/ SN (unconditional loss) h ouncond (Nlarge)
Fmap Sum (conditional loss) ouncond, hc ocond (Nlarge)

References
[1] S. Hong, D. Yang, J. Choi, and H. Lee. Inferring semantic layout for hierarchical text-to-image synthesis. arXiv preprint arX-

iv:1801.05091, 2018. 9
[2] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial networks. arXiv preprint

arXiv:1802.05957, 2018. 12
[3] T. Miyato and M. Koyama. cgans with projection discriminator. arXiv preprint arXiv:1802.05637, 2018. 12
[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and

L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 115(3):211–252, 2015. 7
[5] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans. Signal Processing, 45(11):2673–2681, 1997. 7
[6] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. In CVPR,

2016. 7
[7] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He. Attngan: Fine-grained text to image generation with attentional

generative adversarial networks. arXiv preprint arXiv:1711.10485, 2017. 7

