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1. Motion Feature Construction
We propose to build a set of motion features upon displacement vectors to characterize the pedestrian trajectories in a

dynamic scene. Let {xit, yit}(t ∈ {t1, t2, ...tk}) be the notations of the coordinates of person i from t1 to tk. We can define
the displacement for person i at time instance t by {xitk − x

i
t, y

i
tk
− yit}(t ∈ {t1, t2, ...tk}).

Fig.1 illustrates a detailed example of how to construct the 3D motion features Xt by means of these displacement vectors.
We map the displacement of person i into Xt as following: Xt(x

i
tk
, yitk , 1) accommodates xitk − x

i
t, while Xt(x

i
tk
, yitk , 2)

accommodates yitk − y
i
t. Formally, Xt at time instance t is defined as:{
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(1)

Where H and W are the height and width of the input scene, respectively. We add W and H to Eq.1 to ensure all the entries
of Xt are positive. In practice, {xit, yit} are coordinates that have been projected to a dimension of H ×W = 256 × 256
from annotations. Therefore, Xt have a dimension of 2×H ×W . We include all individuals in the scene at time instance t
through a single Xt, owing to each non-zero index in Xt can be traced to a particular person. Our IDL is able to forecast the
future paths of all moving objects in the scene simultaneously via Xt.

The proposed motion features are built on the inputs of Behavior CNN[2]. We further make a significant contribution on
forecasting multimodal future paths, in contrast of predicting a deterministic future as Behavior CNN does. Moreover, our
work differs fundamentally from Behavior CNN in the network structure aspect.

In this study, we are interested in forecasting Xt′(t
′ ∈ {tk+1, tk+2, ...tk+k′}) by observing Xt(t ∈ {t1, t2, ...tk}). We

filter the final predictions Xt′ for both training and testing by computing Xt′ = Xt′ � 1Xt′ ,GT t′ . 1Xt′ ,GT t′ is an indicator
function. This indicator function equals to one if Xt′ have the same non-zero indexes with GT t′ ; otherwise, it holds a zero.
� represents the Hadamard product.

2. Network Structure
Inference Sub-Network and Statistics Sub-Network: In this section, we describe the additional information of our infer-
ence sub-network L, statistics sub-network Q, policy/generator π and discriminator D from Fig.2 to Fig.5. Table 1 specifies
the details of temporal convolutional sub-module and fully connected layer. The fully convolutional sub-modules and decon-
volutional sub-module in L and Q are pre-trained on ImageNet [1].

3. Additional Qualitative Results
We provide here additional qualitative examples on the SAP and ETH datasets, as in main paper, from Fig.6 to Fig.7. To

better understand the multimodality of future paths that the proposed IDL captures, we highlight several individual examples
from the prediction that obtains best ADE and two random selected predictions (random 1 and random 2). We also visualize
the examples from deterministic IDL-NL2 and ground truth (G.T.). It is evidently that our IDL generates a diverse set of
upcoming trajectories. For instance, the examples of best ADE in Fig.6 obtain results closest to the ground truth, while
random 1 and random 2 cover other valid possibilities. These outcomes are attributed to explore the latent decision. In
contrast, the IDL-NL2 baseline can only produce deterministic future paths, which disagree with ground truth considerably.
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Figure 1. The example of constructing motion features.

SAP ETH & UCY
Kernel size Output size Kernel size Output size

Temporal convolutional
layer 1 in L

Kernel length = 15
Number of kernels = 2048

2048× 1× 4 Kernel length = 2
Number of kernels = 2048

2048× 1× 4

Temporal convolutional
layer 2 in L

Kernel length = 2
Number of kernels = 1024

1024× 1× 2 Kernel length = 2
Number of kernels = 1024

1024× 1× 2

Temporal convolutional
layer 1 in Q

Kernel length = 15
Number of kernels = 256

256× 1× 8 Kernel length = 4
Number of kernels = 256

256× 1× 3

Temporal convolutional
layer 2 in Q

Kernel length = 8
Number of kernels = 64

64× 1× 1 Kernel length = 3
Number of kernels = 64

64× 1× 1

Fully Connect (FC)
layer in Q

– 1 – 1

Table 1. The configurations of temporal convolutional sub-module in both inference sub-network L and statistics sub-networkQ.
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Figure 2. The network structure of the proposed inference sub-network L. We first feed the motion features Xt(t ∈ {t1, t2, ...tk}) into
a pre-trained fully convolutional sub-module one by one. The outputs will be taken as input of the temporal convolutional sub-module,
which derives a tuple with a dimension of 1024 × 1 × 2 in our experiments. We pass each unit with a dimension of 1024 × 1 × 1 to
a pre-trained deconvolutional module to produce the mean µXt and the variance σXt , respectively, for a Gaussian from which the latent
decision samples. Notably we omit the padded zero and ReLU activation after each convolutional/deconvolutional layer of all sub-modules
in the figure.

Figure 3. The pipeline of the proposed statistics sub-network Q. The predicted motion features Xt′(t
′ ∈ {tk+1, tk+2, ...tk+k′}) are input

to a pre-trained fully convolutional sub-module in a sequential manner. The output are read by a temporal convolutional module to produce
a vector. We flatten the outcome from a dimension of 64 × 1 × 1 to 64 vectors and then pass them to a fully connected (FC) layer with
other 64 flattened vectors, which are from a different pre-trained convolutional sub-module that reads the sampled latent decision s. We
insert a ReLU activation after each convolutional layer in each convolutional sub-module. We use zero-padding for all the convolutional
operations.



Figure 4. The structure of our policy/generator π. The zero-padding is used for each convolutiona/deconvolutonal layer. A ReLU activation
is inserted after each convolutional/deconvolutional layer. We apply 256×3×3 kernels with zero padding and a stride of 1 to the ConvGRU
layer. A leaky ReLU activation with a negative slope of 0.1 replaces the tanh activation in ConvGRU.

Figure 5. The pipeline of the proposed discriminator D. We consider the last hidden states that are output of the ConvGRU layer by
perceiving Xtk+k′ (or GT tk+k′ ) as the descriptor of [Xt,Xt′ ] (or [Xt,GT t′ ]). During our experiment, the ConvGRU uses 256 × 3 × 3
kernels with a stride of 1 and zero padding. We use a leaky ReLU activation with a negative slope of 0.1 instead of tanh activation of
the ConvGRU. A ReLU activation is employed after each deconvolutional layer and fc layer. All the convolutional and deconvolutional
operations use zero-padding.
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Figure 6. The qualitative comparisons on SAP dataset.

G.T. Example 1

Example 2 Example 3

Figure 7. The visual results on ETH dataset.


