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1. Fanbeam CT Geometry
Figure 1 illustrates the general fanbeam CT geometry.

The X-ray source and the arc detector rotate with respect to
the origin. The distance between the X-ray source and the
origin is D. For each projection angle β, the arc detector
receives the X-rays transmitted from the object. The inten-
sity values received by the detector is represented as a 1D
signal with independent variable γ. As shown in the top of
Figure 1, the sinogram data Yfan(β, γ) consists of the 1D
signals received in different projection angles β.
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Figure 1: Fanbeam CT geometry.

2. Implementation Details
2.1. Network Architecture

The proposed DuDoNet consists of SE-Net and IE-Net.
The architecture of SE-Net is presented in Table 1. The ar-
chitecture of IE-Net is identical to U-Net [4]. Nc denotes
the number of output channels.Mt ↓ k represents the sino-
gram mask down-sized to 1/k. All downsampling convo-

lution layers except for the first layer use leaky ReLU acti-
vation function with α = 0.2. All upsampling convolution
layers except for the last layer use ReLU activation func-
tion. We use ‘K#-C#-S#-P#’ to denote the configuration of
the convolution layers, where ‘K’, ‘C’, ‘S’ and ‘P’ stand for
the kernel, channel, stride and padding size, respectively.

Name Nc Description
INPUT 2 Input sinogram andMt

DOWN CONV0 64 K4-C64-S2-P1
CONCAT0 65 ConcatenateMt ↓ 2
DOWN CONV1 128 K4-C128-S2-P1
CONCAT1 129 ConcatenateMt ↓ 4
DOWN CONV2 256 K4-C256-S2-P1
CONCAT2 257 ConcatenateMt ↓ 8
DOWN CONV3 512 K4-C512-S2-P1
CONCAT3 513 ConcatenateMt ↓ 16
DOWN CONV4 512 K4-C512-S2-P1
CONCAT4 513 ConcatenateMt ↓ 32

UPSAMPLE5 513
UP CONV5 512 K3-C512-S1-P1
CONCAT5 (512 + 513) Concatenate CONCAT3
UPSAMPLE6 (512 + 513)
UP CONV6 256 K3-C256-S1-P1
CONCAT6 (256 + 257) Concatenate CONCAT2
UPSAMPLE7 (256 + 257)
UP CONV7 128 K3-C128-S1-P1
CONCAT7 (128 + 129) Concatenate CONCAT1
UPSAMPLE8 (128 + 129)
UP CONV8 64 K3-C64-S1-P1
CONCAT8 (64 + 65) Concatenate CONCAT0
UPSAMPLE9 (64 + 65)
UP CONV9 1 K3-C1-S1-P1

Table 1: Network architecture of SE-Net.

2.2. Radon Inversion Layer

We implement our Radon Inversion Layer (RIL) in Py-
Torch [3] and CUDA. In the following, we detail our imple-



mentation.

𝜽

𝒕

𝑢

𝑣

Figure 2: Parallel-beam CT geometry.

RIL consists of three modules: (1) parallel-beam conver-
sion module, (2) Ram-Lak filtering module and (3) back-
projection module. Given a fanbeam sinogram Yfan(β, γ),
we first convert it to a parallel beam sinogram Ypara(t, θ)
using the fan-to-parallel beam conversion. Then, we can
reconstruct the CT image X(u, v) using the Ram-Lak fil-
tering and backprojection. The parallel-beam conversion is
implemented according to the following relation

θ = γ + β, (1)
t = D sin γ, (2)

where t is the projection location on the parallel beam de-
tector and θ is the projection angle in the parallel-beam ge-
ometry as shown in Figure 2. For efficiency, we implement
the change of variable using two 1D interpolations, one for
θ in (1) and the other for t in (2).

The Ram-Lak filtering for Ypara(t, θ) is implemented by

Q(t, θ) = F−1
t {|ω| · Ft {Ypara(t, θ)}} , (3)

where Ft and F−1
t are the Discrete Fourier Transform

(DFT) and inverse Discrete Fourier Transform (iDFT) with
respect to the detector dimension. The filtering module is
implemented using the operations torch.fft and torch.ifft in
PyTorch.

The backprojection module takes the filtered projection
Q(t, θ) as input, and reconstructs X(u, v) via

X(u, v) =

∫ π

0

Q(u cos θ + v sin θ, θ)dθ

≈ ∆θ
∑
i

Q(u cos θi + v sin θi, θi)

≈ ∆θ
∑
i

(dtie − ti)Q(btic, θi)

+ (ti − btic)Q(dtie, θi), (4)

where ti = u cos θi + v sin θi is a function of u, v, and i.
The forward-pass of (4) is parallelizable in θi. During back-
propagation, the gradients of the CT image with respect to
the sinogram are given by

∂X(u, v)

∂Q(t, θ)
=


∆θ(dtie − ti), if t = btic,
∆θ(ti − btic), if t = dtie,
0, otherwise.

(5)

The backprojection module is implemented as a CUDA ex-
tension of PyTorch.

3. Evaluation on CT Images with Real Metal
Artifact

Evaluating MAR methods on CT images of patients car-
rying metal implants is challenging for two reasons: 1)
Modern clinical CT machines have certain build-in MAR
algorithms. Evaluations on CT images after MAR would
not be meaningful; 2) Sinogram data with metal artifacts
are difficult to access, except perhaps from machine manu-
facturers. To the best of our knowledge, there is no existing
sinogram database which targets MAR.

In order to compare different MAR methods, we man-
ually collect CT images with metal artifact from DeepLe-
sion [6] and apply the following steps to obtain the metal
trace Mt and the LI sinogram YLI . DuDoNet can be ap-
plied by taking Mt and YLI as inputs. Conceptually, the
steps can be understood as projecting the input CT image
with unknown imaging geometry to the source domain1

with known geometry.
(i)Mt: We first segment out the metal mask by applying

a threshold of 2,000 HU to the metal-corrupted CT image.
Mt can be obtained by forward projection with the imaging
geometry presented in Section 4 in the manuscript.

(ii) YLI : We adopt the same simulation procedures and
imaging geometry as in the manuscript to synthesize metal-
corrupted sinogram Y . YLI can be generated from Y and
Mt by linear interpolation.

Figure 3 presents visual comparisons of different MAR
algorithms. Metal masks obtained by step (i) are colored in
yellow. We would like to emphasize that the true sinogram
of a given CT image cannot be inferred without information
about the actual imaging geometry (e.g. source to detector
distance, and number of projection views). Therefore, in
Figure 3, due to inconsistent imaging geometry, sinogram-
based MAR approaches (e.g. LI) may lead to an even worse
visual quality than raw CT. In contrast, DuDoNet effectively
reduces metal artifacts in real CT images.

1The domain of CT images with simulated metal artifacts.
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Figure 3: Evaluations on real data. All models are exactly
the same as in the main paper (no re-training).

4. Additional Visual Comparisons on CT im-
ages with Synthesized Metal Artifact

See pages 4 and 5.

5. Practical Issues
In this section, we discuss practical issues when apply-

ing deep learning for MAR. Suppose we have access to
the sinograms and CT images taken from a CT machine,
methods such as CNNMAR [8], and cGAN-CT [5] require
paired data, i.e., CT images with and without metallic im-
plants from the same patient. In our approach, data within
the metal trace is viewed as missing and replaced using
LI [1]. Therefore, to train a DuDoNet, only implant-free
sinograms, CT images and masks of metallic implants are
required. In the experimental evaluations, we synthesize
metal artifacts mainly for comparing with existing MAR
approaches. In real applications, simulated pairs are not
needed by the proposed DuDoNet.
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