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1. Reconstruction Algorithm
1.1. Discretized Image Formation

The acoustic array captures the response of a non-line-of-sight scene to a modulated acoustic signal emitted at location
(xt, yt, z = 0) and measured at location (xr, yr, z = 0) over time t. After a pre-processing step which effectively collapses
the frequency modulated transmit signal to an impulse (detailed in the main paper), the captured measurements are described
as

τ̃(xt, yt, xr, yr, t) =

∫∫∫
Ω

1

(rt + rr)2
ρ(x, y, z) f(ωt,ωr) δ((rt + rr)− tc) dx dy dz (1)

where ρ is the spatially varying albedo we hope to recover, f is the acoustic bidirectional reflectance distribution function, δ
is a Dirac delta function, and Ω = {(x, y, z) ∈ R× R× R | z > 0}.

In practice, we capture and process a discretized version of these measurements, τ̃ ∈ Rnxt×nyt×nxr×nyr×nt and recover
a discretized volume ρ ∈ Rnx×ny×nz . For a single transmit and receive position (i.e. nxt

= nyt = nxr
= nyr = 1), the

discretized captured measurement (τ̃ )i is given by

(τ̃ )i =

∫∫
Ωxt,yt

∫∫
Ωxr,yr

∫ ti

ti−1

τ̃(xt, yt, xr, yr, t) dxt dyt dxr dyr dt, (2)

where Ωxt,yt and Ωxr,yr describe the regions sampled by the transmitter and receiver, and the range of time values is uni-
formly divided between [a, b] ⊂ (0,∞) such that a = t0 < t1 < · · · < tnt = b, with 1 ≤ i ≤ nt. The values nxt , nyt , nxr ,
and nyr similarly describe the number of uniformly discretized spatial samples along each spatial dimension.

We can also define an element in the discretized acoustic albedo volume, (ρ)i,j,k.

(ρ)i,j,k =

∫ zk

zk−1

∫ yj

yj−1

∫ xi

xi−1

ρ(x, y, z) dx dy dz, (3)

where the number of uniformly discretized spatial samples is nx, ny , and nz .

1.2. Confocalizing the Measurements

In order to reconstruct the 3D albedo volume ρ, we process the captured non-confocal measurements τ̃ to emulate mea-
surements captured on a grid of confocal samples, τ̃∗c . This reconstruction procedure consists of three substeps including a
reparameterization procedure, normal moveout correction (NMO), and dip moveout correction (DMO), where the latter two
steps are common to seismic image processing pipelines [8]. The confocalization procedure is outlined in Algorithm 1 for
the discrete captured measurements.

Reparameterization The reparameterization procedure takes the measurements parameterized by transmit and receive
coordinates and reparameterizes them by midpoint and offset coordinates. For all pairs of transmit and receive coordinates
(xt, yt) and (xr, yr) we calculate the new midpoint and offset coordinates as xm = (xt + xr)/2, ym = (yt + yr)/2 and
hx = |xt − xr|/2, hy = |yt − yr|/2. We call the reparameterized measurements τ̃m. See Algorithm 1 for a pseudocode
implementation of this procedure.
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NMO Correction NMO correction takes time resolved measurements at a given midpoint and offset and re-interpolates
along the time dimension to remove any time delay relative to confocal measurements with a zero offset. For measurements
at offset hx, hy , the adjusted time values tn are given by

(tn)i =

√
(t)2

i −
4h2

x

c2
−

4h2
y

c2
∀i ∈ {1, . . . , nt}. (4)

NMO correction, however, assumes that the surface normals of scatters are oriented with surface normal perpendicular to
the acoustic array. For off-angle scatterers, an additional DMO correction adjusts the time dimension and spatial dimension
to emulate the confocal measurements.

DMO Correction To perform the DMO correction, we use a Fourier domain approach called log-stretch DMO [9]. We
extend the DMO correction to 3 dimensions as detailed in Algorithm 1 using the approach of Vlad and Biondi [7]. Additional
motivation for the Fourier domain approach and derivations are also included below.

1.3. ADMM-based Reconstruction

Given the measurements τ̃∗c which emulate confocally captured samples, we solve an optimization problem to mitigate
spatial blur and impose priors on the reconstructed volume. We formulate the objective as

arg min
{ρ}

1

2
‖Aρ− τ̃∗c ‖+ λ1Γ1(ρ) + λ2Γ2(ρ) (5)

where ρ ∈ Rnxnynz and τ̃∗c ∈ Rnxmnymnt are vectorized, and A implements convolution with the spatial blur kernel and
the light-cone transform kernel if reconstructing retroreflective or diffusely scattering objects [4]. The additional terms Γ1

and Γ2 are priors on the reconstructed volume with penalty terms λ1 and λ2. In our implementation, we choose 3D isotropic
total variation (TV) and sparsity priors.

To solve this problem, we use the alternating direction method of multipliers [2] which allows us to split the problem into
sub-problems and enforce consensus in the constraints. We reformulate the objective as

arg min
{ρ}

1

2
‖Aρ− τ̃∗c ‖+ λ1‖z1‖1 + λ2

∑
i

∥∥∥∥∥∥
(z2)i

(z3)i
(z4)i

∥∥∥∥∥∥
2

subject to (6)
I
Dx
Dy
Dz


︸ ︷︷ ︸
K

ρ =


z1
z2
z3
z4


︸ ︷︷ ︸
z

,

where we have substituted the sparsity and 3D TV penalties for Γ1 and Γ2. The Dx,Dy, and Dz operators indicate first
order difference operators along the x, y, and z dimensions. The augmented Lagrangian is given as

Lρ(ρ, z,y) =
1

2
‖Aρ− τ̃∗c ‖+ λ1‖z1‖1 + λ2

∑
i

∥∥∥∥∥∥
(z2)i

(z3)i
(z4)i

∥∥∥∥∥∥
2

+ yT (Kρ− z) +
ρ

2
‖Kρ− z‖22

(7)

with dual variable y and penalty parameter ρ [2]. For convenience, we combine the linear and quadratic terms and use the
scaled form of ADMM, yielding a slightly rewritten form of the augmented Lagrangian:

Lρ(ρ, z,u) =
1

2
‖Aρ− τ̃∗c ‖+ λ1‖z1‖1 + λ2

∑
i

∥∥∥∥∥∥
(z2)i

(z3)i
(z4)i

∥∥∥∥∥∥
2

+
ρ

2
‖Kρ− z + u‖22 −

ρ

2
‖u‖22. (8)



Here u = (1/ρ)y is the scaled dual variable [2]. This leads to the following iterative updates.

ρ← ρ0, u← 0, z ← 0
for k = 1 to maxiter

z1 ← prox‖·‖1 (v) = arg min
{z1}

Lρ (ρ, z,u) = arg min
{z1}

λ1 ‖z1‖1 +
ρ

2
‖v − z1‖22, v = ρ+ u1 (9)

z2z3
z4

← prox‖·‖2,TV
(v) = arg min

{z2/3/4}
Lρ (ρ, z,u) = arg min

{z2/3/4}
λ2

∑
i

∥∥∥∥∥∥
(z2)i

(z3)i
(z4)i

∥∥∥∥∥∥
2

+
ρ

2

∥∥∥∥∥∥∥∥∥∥
v1v2
v3


︸ ︷︷ ︸
v

−

z2z3
z4


∥∥∥∥∥∥∥∥∥∥

2

2

, (10)

v =

DxDy
Dz

ρ+

u2

u3

u4



u1

u2

u3

u4

← u+Kρ− z (11)

ρ← prox‖·‖2 (v) = arg min
{ρ}

Lρ (ρ, z,u) = arg min
{ρ}

1

2
‖Kρ− v‖22 , v = z − u (12)

end for

Before the iterations, we initialize the unknown volume with the processed measurements ρ0 = τ̃∗c . If the scene is
retroreflective or diffusely scattering we apply the first stage of the LCT to yield the initial reconstruction, and then apply the
final step of the LCT after the ADMM algorithm has converged. Concretely, the LCT image formation is given by

ρ = R−1
z F−1HFRtτ̃

∗
c (13)

with F being the Fourier transform,R−1
z andRt being quadratic reinterpolation operators, andH representing Wiener filter

deconvolution with the LCT kernel [4]. We initialize the volume such that ρ0 = F−1HFRtτ̃
∗
c and solve the ADMM

iterations within the quadratically resampled space so as to avoid the computational complexity of the resampling operator
within every ADMM iteration. Once ADMM is converged, we apply the inverse quadratic resampling operator to yield the
final output as ρ∗ = R−1

z ρ.
We repeat the iterations until the primal and dual stopping criteria described by Boyd et al. [2] are met. Specifically, we

iterate until ‖Kρk − zk‖2 ≤ εpri and ‖ρKT (zk+1 − zk)‖2 ≤ εdual, with εpri = εdual = 1e-3.

1.3.1 Proximal Operator for the Sparsity Prior (Eq. 9)

A closed form solution of the proximal operator for the sparsity term takes the form of the elementwise soft thresholding
operator, Sκ [5].

prox‖·‖1 (v) = Sλ1/ρ(v) (14)

= (v − λ1/ρ)+ − (−v − λ1/ρ)+ (15)
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Figure 1. Double reflection experimental setup and results. Two corner reflectors are placed around two corners such that sound reflects off
of two surfaces before being scattered back to the acoustic array (left). The reconstructed results show the relative positions of the corner
reflectors (right).

1.3.2 Proximal Operator for the TV Prior (Eq. 10)

Again, the solution to the TV proximal operator is closed-form and is given by block soft thresholding [5].

prox‖·‖2,TV
(v) =

1− λ2/ρ∥∥∥∥∥∥
(v2)i(v3)i
(v4)i

∥∥∥∥∥∥
2


+

(v2)i(v3)i
(v4)i

 , ∀i (16)

1.3.3 Proximal Operator for the Quadratic Term (Eq. 12)

Finally, the closed-form solution for the proximal operator for the quadratic term is given by the normal equations as

prox‖·‖2 (v) = arg min
{ρ}

1

2
‖Aρ− τ̃∗c ‖

2
2 +

ρ

2
‖Kρ− v‖22 (17)

= (ATA+ ρKTK)−1(AT τ̃∗c + ρKTv) (18)

= F−1

{
F∗{a} · F{τ̃∗c }+ ρ (F∗{v1}+ F∗{dx} · F{v2}+ F∗{dy} · F{v3}+ F∗{dz} · F{v4})
F∗{a} · F{a}+ ρ (1 + F∗{dx} · F{dx}+ F∗{dy} · F{dy}+ F∗{dz} · F{dz})

}
(19)

Here, the closed form solution consists of elementwise products · and divisions ·· computed on the Fourier transforms of the
blur kernel a, first-order difference kernels dx, dy , and dz , and volumes τ̃∗c , v1, v2, v3, and v4.

2. Supplementary Experiments
In this section, additional experimental results are described including imaging around multiple corners and evaluating the

resolution of the acoustic array.
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Figure 2. Resolution experimental results. The resolution limits of the acoustic array are tested by placing two corner reflectors (left) or
two flat reflectors (right) close together until they are just separately resolveable. For the small corner reflectors, long wavelengths in the
transmit signal tend to diffract around the reflectors, resulting in less backscattered signal and degraded resolution of approximately 13 cm
and 15 cm at 1 m and 2 m distances. The flat reflectors reflect more of the signal and are just separable at spacings of 1.5 cm and 2.5 cm at
distances of 1 m and 2 m.

specular specular + LCT retroreflective retroreflective
 + LCT

Figure 3. Effect of LCT on reconstruction of specularly and retrorefectively scattering objects. Applying the LCT to the specularly
reflecting Letter ”H” scene produces a blurry result because the LCT does not properly model specular image formation models. Applying
the LCT to the retroreflectors in the “Corner Reflectors” scene focuses the scattered energy, recovering the locations of the scatterers.

Imaging Around Two Corners To capture an image around two corners, we place two corner reflectors with a side length
of 25 cm in the scene, shown in Fig. 1. Here, the sound bounces of an initial wall, then another wall before scattering from the
hidden objects and returning to the acoustic array. The total indirect path length is approximately 3.5 m, and we reconstruct
the relative positions of the corner reflectors as shown in Fig. 1.

Resolution Experiments We test the maximum lateral resolution limits of the acoustic system by setting up two different
line-of-sight scenes consisting of two small corner reflectors or two flat reflectors. We reconstruct the measurements on a
grid of 64 horizontal × 30 vertical spatial samples for the corner reflectors and 128× 30 samples for the flat reflectors. The
resolution is determined at distances of 1 m and 2 m by decreasing the spacing between the scatterers until they are just
separately resolveable in the reconstructed image (see Fig. 2).

For the small corner reflectors, wavelengths much longer than the side-length of 5 cm diffract around the object rather
than being strongly backscattered. This reduces the effective bandwidth of the returning signal and results in worse resolution
(roughly 6 cm at 1 m and 8 cm at 2 m) relative to the theoretical lower bounds of approximately 1 cm at 1 m and 2 cm at 2 m
with a transmit signal bandwidth of 18 kHz. Theoretical resolution bounds are derived below.

The surface of the flat reflectors is larger than the longest wavelengths in the transmit signal (20 cm), and so a spacing of
roughly 1.5 cm and 2.5 cm between the flat panels can be resolved at distances of 1 m and 2 m respectively.

Effect of LCT On Specular Measurements We examine the effect of the LCT on the reconstruction of retroreflective
and specular objects in Fig. 3. Omitting the LCT for retroreflective objects results in a poorer result; however, we can still
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Figure 4. Simulated distance at which diffusely backscattered optical energy or specularly backscattered acoustic pressure equals the noise
floor of incident ambient light or sound.

identify scatterers based on sound arrival times. Applying the LCT to specular objects blurs the reconstructed volume. A
priori information about the scattering properties of the hidden objects should therefore be used to inform the choice of
whether or not to use the LCT in the reconstruction.

Energy-Based Comparison to Optical Methods To provide additional comparison between acoustic and optical modal-
ities, we analyze the acoustic and optical energies used in each hardware setup. The acoustic system emits approximately
1 mW of acoustic power for 1/16 second at each array position, and the optical setup uses a laser with 0.1 mW average power
and 6 s exposure, resulting in 0.0625 mJ acoustic energy and 0.6 mJ optical energy per scan position.

A simulated comparison of the detection range of optical and acoustic techniques for a fixed transmit power and varying
levels of ambient noise is shown in Fig. 4. In this comparison, we consider an optical source with 1 mW average power,
10 MHz repetition rate, and 80 ps pulse width. The detection distance is the distance from the wall to a diffusely scattering
hidden object at which the backscattered energy from the laser pulse is equivalent to the energy of ambient light. For the
acoustic case, we calculate the distance from the acoustic array to a specular hidden object such that the backscattered
pressure wave from a 1 mW source is equivalent to the ambient pressure. We note the increased detection range of acoustic
systems compared to optical systems as shown in Fig. 4.

3. Supplementary Derivations
Here we provide additional derivations which describe the resolution limits of the system and the geometry of the DMO

correction as well as its Fourier domain relationships.

Derivation of Resolution Limits To derive an lower bound on the resolution of the optical system, we assume a perfectly
specularly reflecting wall and couple the lateral resolution to the axial resolution of the system. Consider an acoustic signal
emitted from a transmitter at location (xt, yt, z = 0) which propagates to a reflector at a point (x, y, z) and back to a receiver
at (xr, yr, z = 0). The round trip propagation time, t0 is calculated by adding the distance from the transmitter to the reflector
rt to the distance from the reflector to the receiver rr and dividing by the speed of light c. This is expressed as

t0 =
1

c
(rt + rr)

=
1

c

(√
(xt − x)2 + (yt − y)2 + z2 +

√
(xr − x)2 + (yr − y)2 + z2

)
. (20)

We can determine how the time of flight changes with a small change in lateral position by taking the derivative with respect
to the spatial position x:

dt0
dx

=
1

c

(
xt − x√

(xt − x)2 + (yr − y)2 + z2
+

xr − x√
(xr − x)2 + (yr − y)2 + z2

)
(21)

Substituting in the temporal resolution of the system γ for dt0, yields an expression for the lateral resolution of the system.
For our system, which uses a frequency modulated continuous wave (FMCW) signal, γ = 1/(2B) [1], where B is the
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Figure 5. Geometry of acoustic array and angled reflector.

bandwidth of the FMCW signal.

dt0 = γ =
1

2B
(22)

⇒ dx =
γc

xt−x
rt

+ xr−x
rr

. (23)

Note that this expression reduces to the form derived by O’Toole et al. [4] in the confocal case where xt = xr and yt = yr.
This expression also shows that confocal samples yield the best resolution, or the lowest value of dx.

Additional DMO Derivations DMO correction is applied after NMO correction to account for reflectors whose normal
vector points away from the direction perpendicular to the acoustic array. We parameterize the orientation of the reflector by
the angle φx which relates to the normal vector n ∈ R2 by nx = sinφx and nz = − cosφx. The DMO correction is given
by

tdmo =

√
t2n +

4h2
x sin2 φx
c2

. (24)

where tn is the NMO corrected time, hx is the measurement offset, and tdmo is the DMO corrected time which emulates
measurements taken from a confocal sampling position. We derive this equation relying on the geometry of Fig. 5. Parts of
this derivation are given by Slotnick [6] and Levin [3], but we include the entire derivation here for completeness.

Our intent is to find the time of propagation t∗ along the confocal path from x∗ to the scatterer and back. First, note from
Fig. 5 the following relationships

CD = 2hx (25)

CE = rr + rt = t0c (26)

DE = t1c (27)

where t0 and t1 indicate propagation time. By the law of cosines, we have that

CE
2

= CD
2

+DE
2 − 2CDDE cos∠CDE. (28)

Again, given the geometry of Fig. 5 we have that ∠CDE = φx + 900. Then, substituting Eqs. 25, 26, and 27 into Eq. 28
gives

t20c
2 = 4h2

x + t21c
2 − 4hxt1c cos(φx + 900)

= 4h2
x + t21c

2 + 4hxt1c sinφx. (29)
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Figure 6. Geometry of angled reflector illustrating Fourier domain relationship. Assume the reflector is separated from confocal sample
position x∗ by a distance equivalent to a wavelength of the transmit signal. Then the observed spatial frequency at the acoustic array
corresponds to a wavelength of λx dependent on the reflector angle φx.

Next, observe that

2FG = t∗c = t1c+ 2hx sinφx

⇒ t1c = t∗c− 2hx sinφx, (30)

and substitute Eq. 30 into Eq. 29.

t20c
2 = 4h2

x + c2(t∗)2 + 4h2
x(1− sin2 φx) (31)

⇒ t20 = (t∗)2 +
4h2

x cos2 φx
c2

. (32)

Recall the NMO equation and rearrange as

t20 = t2n +
4h2

x

c2
. (33)

Then substitute into Eq. 32 to yield

t2n +
4h2

x

c2
= (t∗)2 +

4h2
x cos2 φx
c2

⇒ (t∗)2 = t2n +
4h2

x

c2
(1− cos2 φx)

⇒ t∗ =

√
t2n +

4h2
x sin2 φx
c2

(34)

which is the DMO correction.

Relationship to Fourier Domain Generally we do not have knowledge of the angle of the reflector φx, and so we employ
a Fourier domain approach which relates φx to the spatial and temporal frequencies kx and ω. We briefly illustrate the
relationship between φx and the Fourier parameters [8] and refer the interested reader to extended derivations of log-stretch
DMO correction given by Yilmaz [8] or Zhou et al. [9].

In the geometry of Fig. 6 let the distance between the reflector and x∗ be equal to one wavelength λ of the reflected signal
at some transmit frequency. Then, the wavelength of the signal measured across the intersection with the acoustic array is
given by λx and we have that

sinφx =
λ

λx
(35)



The wavelengths can also be written using the following relationships

λ =
2πc

ω
(36)

λx =
2π

kx
, (37)

where ω is temporal frequency and kx is spatial frequency. Substituting Eqs. 36 and 37 into Eq. 35 gives

sinφx =
ckx
ω

(38)

which allows us to rewrite Eq. 34 without explicit dependence on φx via a ratio of the measured spatial and temporal
frequencies.
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Algorithm 1 Measurement Confocalization Procedure
Require:

τ̃ ∈ Rnxt×nyt×nxr×nyr×nt . Measurements
xt ∈ Rnxt ,yt ∈ Rnyt ,xr ∈ Rnxr ,yr ∈ Rnyr , t ∈ Rnt . List of transmit, receive, and time coordinates
xm ∈ Rnxm ,ym ∈ Rnym ,hx ∈ Rnhx ,hy ∈ Rnhy . List of midpoint and offset coordinates for measurement lo-

cations xt,yt,xr,yr

1: procedure COORD2IDX(xt, yt, xr, yr) . Find midpoint, offset coordinate indices for given transmit,
receive coordinates

2: Find i s.t. (xt + xr)/2 = (xm)i
3: Find j s.t. (yt + yr)/2 = (ym)j
4: Find k s.t. |xt − xr|/2 = (hx)k
5: Find ` s.t. |yt − yr|/2 = (hy)`
6: Return i, j, k, `
7: end procedure

8: τ̃m ← 0 ∈ Rnxm×nym×nhx×nhy×nt . Reparameterize measurements by midpoint
and offset

9: for p = (1 : nxt
), q = (1 : nxr

), r = (1 : nyt), s = (1 : nyr ) do
10: (i, j, k, `)← COORD2IDX((xt)p, (xr)q, (yt)r, (yr)s)
11: (τ̃m)i,j,k,` ∈ Rnt ← (τ̃ )p,q,r,s ∈ Rnt

12: end for

13: for i = (1 : nxm), j = (1 : nym), k = (1 : nhx), ` = (1 : nhy ) do . Apply NMO correction

14: tn =

√
t2 − 4(hx)2k

c2 − 4(hy)2`
c2

15: (τ̃m)i,j,k,` ← INTERPOLATE((τ̃m)i,j,k,`, t, tn) . Reinterpolate along time dimension to NMO-
corrected time coordinates

16: end for

17: τ̃∗ ← 0 ∈ Rnxm×nym×nhx×nhy×nt . Apply DMO correction
18: t′n = ln tn
19: for i = (1 : nxm

), j = (1 : nym), k = (1 : nhx
), ` = (1 : nhy

) do
20: (τ̃∗)i,j,k,` ← INTERPOLATE((τ̃m)i,j,k,`, tn, t

′
n) . Reinterpolate along time dimension to log-

stretch time coordinates
21: end for
22: Tdmo ← Fxm,ym,t{τ̃∗}(kx,ky,W ) ∈ Rnkx×nky×nhx×nhy×nW . Fourier transform along the midpoint and time

coordinates xm,ym, t, and calculate the re-
spective dual frequency coordinates kx,ky,W

23: for i = (1 : nkx), j = (1 : nky ), k = (1 : nhx
), ` = (1 : nhy

), p = (1 : nW ) do
24: Let k · h = (kx)i(hx)k + (ky)j(hy)`

25: Φ←



0, k · h = 0

k · h (W )p = 0

(W )p
2


√

1 +

(
2k · h
(W )p

)2

− 1− ln


√

1 +
(

2k·h
(W )p

)
+ 1

2


 , (W )p 6= 0

26: (Tdmo)i,j,k,`,p ← ejΦ(Tdmo)i,j,k,`,p . Apply phase shift in Fourier domain
27: end for
28: τ̃∗ ← F−1

kx,ky,W
{Tdmo}(xm,ym, t′n) . Inverse Fourier transform

29: for i = (1 : nxm
), j = (1 : nym), k = (1 : nhx

), ` = (1 : nhy
) do

30: (τ̃∗)i,j,k,` ← INTERPOLATE((τ̃∗)i,j,k,`, t′n, tn) . Reinterpolate along time dimension to undo log-
stretch time coordinates to produce output, τ∗

31: end for
32: τ̃∗c =

∑
hx,hy

τ̃∗ . Sum over the offset dimensions to produce the final output


