
FlowNet3D: Learning Scene Flow in 3D Point Clouds
Supplementary Material

Xingyu Liu∗1 Charles R. Qi∗2 Leonidas J. Guibas1,2
1Stanford University 2Facebook AI Research

A. Overview

In this document, we provide more details to the main
paper and show extra results on model size, running time
and feature visualization.

In Sec. B we describe details in the FlyingThings3D ex-
periments. In Sec. C, we provide more details on the base-
line architectures (main paper Sec. 6.1). In Sec. D we de-
scribe how we prepared KITTI LiDAR scans for our evalu-
ations (Sec. 6.2). In Sec. E and Sec. F we explain more de-
tails about the experiments for the two applications of scene
flow (Sec. 6.3). Lastly in Sec. G we report our model size
and run time and in Sec. H we provide more visualization
results on FlyingThings3D and network learned features.

B. Details on FlyingThings 3D Experiments
(Sec. 6.1)

The FlyingThings3D dataset only provides RGB images,
depth maps and depth change maps. We constructed the
point cloud scene flow dataset by popping up 3D points
from depth map. The virtual camera intrinsic matrix is

K =

fx = 1050.0 0.0 cx = 479.5
0.0 fy = 1050.0 cy = 269.5
0.0 0.0 1.0


where (fx, fy) are the focal lengths and (cx, cy) is the loca-
tion of principal point. We didn’t use RGB images in point
cloud experiments.

The Z values of background are significantly larger than
the moving objects in the foreground of FlyingThings3D
scenes. In order to prevent depth values from explosion and
to focus on more apparent motion of foreground objects, we
only use points whose Z is larger than a certain threshold t.
We set t = 35 in all experiments.

We generate a mask for disappearing/emerging points
due to: 1) change of field of view; 2) occlusion. Scene
flow loss at the masked points are ignored during training
but were used during testing (since we do not have masks at
the test time).

C. Details on Baseline Architectures (Sec. 6.1)

FlowNet-C on depth and RGB-D images. This model is
adapted from [4]. The original CNN model takes a pair of
RGB images as input. To predict scene flow, we send a pair
of depth images or RGB-D images into the network. Depth
maps are transformed to XY Z coordinate maps. RGB-D
images are six-channel maps where the first three channels
are RGB images and the rest are XY Z maps. The model
has the same architecture as FlowNet-C in [4] except that
the input has six channels for RGB-D input.

The RGB values are scaled to [0, 1]. We use the same
threshold t as point cloud experiments. Also, scene flow
loss at positions where Z value is larger than t are ignored
during training and testing.

EM-baseline. The model mixes two point clouds at input
level. How to represent the input is not obvious though as
two point clouds do not align/correspond. A possible solu-
tion is to append a one-hot vector (with length two) as an
extra feature to each point, with (1, 0) indicating the point
is from the first set and (0, 1) for the other set, which is
adopted in our EM-baseline.

In Fig. 1, we illustrate our baseline architectures for the
EM-baseline. For each set conv layer, r means radius for
local neighborhood search, mlp means multi-layer percep-
tron used for point feature embedding, “sample rate” means
how much we down-sample the point cloud (for example
1/2 means we keep half of the original points). The fea-
ture propagation layer is originally defined in [6], where
features from sub-sampled points are propagated to up-
sampled points by 3D interpolation (with inverse distance
weights). Specifically, for an up-sampled point its feature
is interpolated by three k-NN points in the sub-sampled
points. After this step, the interpolated features are then
concatenated with the local features linked from the outputs
of the set conv layers. For each point, its concatenated fea-
ture passes through a few fully connected layers, the widths
of which are defined by mlp{l1, l2, ...} in the block.

1



LM-baseline. The late mixture baseline (LM-baseline)
mixes two point clouds at the global feature level, which
makes it difficult to recover detailed local relations among
the point clouds. In Fig. 2, we illustrate its architecture,
which firstly computes global feature from each of the two
point clouds, then concatenates the global features and fur-
ther processes it with a few fully connected layers (mixture
happens at global feature level), and finally concatenates the
tiled global feature with local point feature from point cloud
1 to predict the scene flow.

DM-baseline. While our FlowNet3D model and the DM-
baseline both belong to the deep mixture meta architec-
ture, they share the same point feature learning modules to
learn intermediate point features and then fix two points at
this intermediate level. However they are different in two
ways. First the DM-baseline does not adopt a flow em-
bedding layer to “mix” the two point clouds (with XY Z
coordinates and intermediate features). Instead The DM-
baseline concatenates all feature distances and XY Z dis-
placements into a long vector and passes it to a fully con-
nected network before more set conv layers. This however
results in sub-optimal learning because it is highly affected
by the point orders. Specifically, given a point pi = (xi, fi)
in the first point cloud’s intermediate point cloud (the one
to be mixed with the cloud from the second frame), its r
radius neighborhood points in the second frame {qj}kj=1

with qj = (yj , gj), the DM-baseline subsample points in
the second frame so that k is fixed and then creates a long
vector vi ∈ R2k by concatenation: (yj − xi, d(fi, gj)) for
j = 1, ..., k. The function d is a cosine distance function
to compute the feature distance of two points. The vector
vi is then processed with a few fully connected layers be-
fore feature propagation. Second, compared to FlowNet3D,
the baseline just uses 3D interpolation (with skip links) for
flow refinement, with interpolation of three nearest neigh-
borhood with inverse distance weights as described in [6].

D. Details on KITTI Data Preparation (Sec.
6.2)

Ground removal. For our first evaluation on the KITTI
dataset (Table 4 in the main paper), we evaluate on LiDAR
scans with removed grounds, for two reasons. First, this is
a more fair comparison with previous works that relied on
ground segmentation/removal as a pre-processing step [3,
7]. Second, since our model is not trained on the KITTI
dataset (due to the very small size of the dataset), it is hard
to make it generalize to predicting motions of ground points
because the ground is a large flat piece of geometry with
little cue to tell its motion.

To validate we can effectively remove grounds in Li-
DAR point clouds, we evaluate two ground segmentation

Method RANSAC GroundSegNet

Accuracy 94.02% 97.60%

Time per frame 43 ms 57 ms

Table 1: Evaluation for ground segmentation on KITTI Li-
dar scans. Accuracy is averaged across test frames.

algorithms: RANSAC and GroundSegNet. RANSAC fits a
tilted plane to point clouds and classify points close to the
plane as ground points. GroundSegNet is a PointNet seg-
mentation network trained to classify points (in 3D patches)
to ground or non-ground (we annotated ground points in all
150 frames and used 100 frames as train and the rest as test
set). Both methods can run in real time: 43ms and 57ms per
frame respectively, and achieve very high accuracy: 94.02%
and 97.60% averaged across test set. Note that for eval-
uation in the main paper Table 4, we used our annotated
ground points for ground removal, to avoid dependency on
the specific ground removal algorithm.

Inference on large point clouds. On large KITTI scenes,
we split the scene into multiple chunks. Chunk positions are
the same for both frames. Each chunk has size of 5m×5m
and is aligned with XY axes (considering Z is the up-axis).
There are overlaps between chunks. In practice, neighbor-
ing chunks are off by 2.5m with a small noise (Gaussian
with 0.3 std) in X or Y direction to each other.

We run the final FlowNet3D model on pairs of frame
1 chunk and frame 2 chunk that are at the same location.
Points appearing in more than one chunk have their esti-
mated flows averaged to get the final output.

E. Details on the Scan Registration Application
(Sec. 6.3.1)

For this experiment we prepared a partial scan dataset by
virtually scanning the ModelNet40 [8] CAD models with
a rotated camera around the center axis of the object, with
the same train/test split as for the classification task. The
virtual scan tool is provided by the Point Cloud Library. In
partial scans, parts of an object may appear in one scan but
missing in the other, which makes registration/warping very
challenging.

We finetuned our FlowNet3D model on this dataset, to
predict the 3D warping flow from points in one partial scan
to their expected positions in the second scan. Then at in-
ference time, we predict the flow for each point in the first
scan as its scene flow. Since the point moving distance can
be very large in those partial scans, we iteratively regress
twice for the scene flow (i.e. predict a flow from point cloud
1 to point cloud 2, and then predict a second residual flow
from point cloud 1 + first flow to point cloud 2). Then the



set conv
!	 = 	0.5

'(){32,32,64}
sample rate = 1/221

×(
3+

2)

1×
(3
+
64
)

set conv
!	 = 1.0

'(){64,64,128}
sample rate = 1/4

1/
4×
(3
+
12
8)

set conv
!	 = 2.0

'(){128,128,256}
sample rate = 1/2

1/
8×
(3
+
25
6)

set conv
!	 = 4.0

'(){256,256,512}
sample rate = 1/4

1/
32
×(
3+

51
2)

feature
propagation
mlp{256,256}

1/
8×
(3
+
25
6)

feature
propagation
mlp{256,256}

1/
4×
(3
+
25
6)

feature
propagation
mlp{256,256}

1×
(3
+
25
6)

feature
propagation
mlp{256,256}

1×
(3
+
25
6)

1×
3

Figure 1: Architecture of the Early Mixture baseline model (EM-baseline).

set conv
!	 = 	0.5

'(){32,32,64}
sample rate = 1

set conv
!	 = 1.0

'(){64,64,128}
sample rate = 1/8

3×
3

3×
(3
+
64
)

3/
8×
(3
+
12
8)

set conv
!	 = +93:

'(){128,128,256}
sample rate = 8/n 1×

25
6

po
in
tc
lo
ud
2

set conv
!	 = 	0.5

'(){32,32,64}
sample rate = 1

set conv
!	 = 1.0

'(){64,64,128}
sample rate = 1/8

3×
3

3×
(3
+
64
)

3/
8×
(3
+
12
8)

set conv
!	 = +93:

'(){128,128,256}
sample rate = 8/n 1×

25
6

po
in
tc
lo
ud
1

25
6

25
6

;<((=	>?33@AB@C
DE=@!F
{512,256} 25

6

3×
25
6

tile

concat

3×
64

set conv
!	 = 0

'(){256,256}
sample rate = 1 3×

25
6

3×
3

Figure 2: Architecture of the Late Mixture baseline model (LM-baseline).

final scene flow is the 1st flow + the residual flow (visual-
ized in Fig. 6 main paper). To get a rigid motion estimation
from the scene flow, we can fit a rigid transformation from
the point cloud 1 to the point cloud 2 + scene flow, as they
have one-to-one correspondences. Then the rigidly trans-
formed point cloud 1 is the final estimation of our warping
(shown in main paper Fig. 6 right while the warping error
is reported in main paper Table 6).

F. Details on the Motion Segmentation Appli-
cation (Sec. 6.3.2)

We first obtained the estimated scene flow with the
method discussed in Sec. D. Then the flow is multiplied
with a factor λ and is concatenated with coordinates of each
point as a 6-dim vector (x, y, z, λdx, λdy, λdz). Next based
them we find connected components in the 6-dim space by
setting two hyperparameters: a proper minimum cluster size
and distance upper bound for forming a cluster.

G. Model Size and Run Time
FlowNet3D has a model size of 15MB, which is much

smaller than most deep convolutional neural networks. In
Table 2, we show the inference speed of the model on point
clouds with different scales. For this evaluation we assume
both point clouds from the two frames have the same num-
ber of points as specified by #points. We test the run time
on a single NVIDIA GTX 1080 GPU with TensorFlow [1].

#Points 1K 1K 2K 2K 4K 4K 8K

Batch size 1 8 1 4 1 2 1

Time (ms) 18.5 43.7 36.6 58.8 101.7 117.7 325.9

Table 2: Run time of FlowNet3D with different input point
cloud sizes and batch sizes. For this evaluation we assume
the two input point clouds have the same number of points.

H. More Visualizations

Visualizing scene flow results on FlyingThings3D We
provide results and visualization of our method on Fly-
ingThings3D test set [5]. The dataset consists of ren-
dered scenes with multiple randomly moving objects sam-
pled from ShapeNet [2]. To clearly visualize the complex
scenes, we provide the view of the whole scene from top.
We also zoom in and view each object from one or more
directions. The directions can be inferred from consistent
XY Z coordinates shown in both the images and point cloud
scene. We show points from frame 1, frame 2 and estimated
flowed points in different colors. Note that local regions
are zoomed in and rotated for clear viewing. To help find
correspondence between images and point clouds, we used
distinct colors for zoom-in boxes of corresponding objects.
Ideal prediction would roughly align blue and green points.
The results are illustrated in Figure 3-5.

Our method can handle challenging cases well. For ex-



Frame 1

Frame 2
x

y

z

xy
z

xy

z

x

y

z

x
y

z

Figure 3: Scene flow results for TEST-A-0061-right-0013 of FlyingThings3D.

Frame 1

Frame 2

xy
z

x

y

z

x

y

z

x

y

z

xy
z

xy
z

x y

z

x

y

zx

y

z

Figure 4: Scene flow results for TEST-A-0006-right-0011 of FlyingThings3D.

ample, in the zoom-in box of Figure 3, the gray box is oc-
cluded by the sword in both frames and our network can
still estimate the motion of both the sword and visible part
of the gray box well. There are also failure cases, mainly
due to the change of visibility across frames. For example,
in the orange zoom-in box of Figure 5, the majority of the
wheel is visible in the first frame but not visible in the sec-
ond frame. Thus our network is confused and the estimation
of the motion for the non-visible part is not accurate.

Network visualization Fig. 6 visualizes the local point
features our network has learned, by showing a heatmap
of correlations between a chosen point in frame 1 and all
points in frame 2. We can clearly see that the network has
learned geometric similarity and is robust to partiality of the
scan.

Fig. 7 shows what has been learned in a flow embed-
ding layer. Looking at one neuron in the flow embedding
layer, we are curious to know how point feature similar-



Frame 1

Frame 2

x

y

z

x

y

z

xy
z

x

y

z

x
y

z

Figure 5: Scene flow results for TEST-B-0011-left-0011 of FlyingThings3D.

Figure 6: Visualization of local point feature similarity. Given a point P (pointed by the blue arrow) in frame 1 (gray), we
compute a heat map indicating how points in frame 2 are similar to P in feature space. More red is more similar.

ity and point displacement affect its activation value. To
simplify the study, we use a model trained with cosine dis-
tance function instead of network learned distance (through
directly inputing two point feature vectors). We iterate dis-
tance values and displacement vector, and show in Fig. 7
that as similarity grows from -1 to 1, the activation becomes
significantly larger. We can also see that this dimension is
probably responsible for a flow along the positive Z direc-
tion.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensor-
flow: A system for large-scale machine learning. In OSDI,

2016. 3

[2] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich
3D Model Repository. Technical Report arXiv:1512.03012,
2015. 3

[3] A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard. Rigid
scene flow for 3d lidar scans. In IROS, 2016. 2

[4] A. Dosovitskiy, P. Fischery, E. Ilg, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox. Flownet: Learning
optical flow with convolutional networks. In ICCV, 2015. 1

[5] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Doso-
vitskiy, and T. Brox. A large dataset to train convolutional net-
works for disparity, optical flow, and scene flow estimation. In
CVPR, 2016. 3



x

y

z

x

y
z

-1.0 -0.8 -0.6 -0.4 -0.2 -0.0 +0.2 +0.4 +0.6 +0.8 +1.0

-1.0 -0.8 -0.6 -0.4 -0.2 -0.0 +0.2 +0.4 +0.6 +0.8 +1.0

x

y
z x

y z

Figure 7: Visualization of flow embedding layer. Given a certain similarity score (defined by one minus cosine distance, at
the bottom of each cube), the visualization shows which (x, y, z) displacement vectors in a [−5, 5]× [−5, 5]× [−5, 5] cube
activate one output neuron of the flow embedding layer.

[6] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space.
arXiv preprint arXiv:1706.02413, 2017. 1, 2

[7] A. K. Ushani, R. W. Wolcott, J. M. Walls, and R. M. Eustice.
A learning approach for real-time temporal scene flow estima-
tion from lidar data. In ICRA, 2017. 2

[8] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In CVPR, pages 1912–1920, 2015. 2


