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A. Overview
In this document, we provide more details to the main

paper and show extra results on per-class accuracy and vi-
sualizations.

In section B, we provide more details on the
Kinetics/ResNet-18 ablation experiments (main paper sec-
tion 5.1). In section C, we provide more details on the base-
line architectures in Kinetics/ResNet-18 comparison exper-
iments (main paper section 5.2). In section D, we provide
details on the CPNet architecture used in Kinetics/ResNet-
101 experiment (main paper section 5.3). In section E,
we provide details on the architecture used in Something-
Something and Jester experiments (main paper section 5.4
and 5.5). In section F we report the per-class accuracy of
C2D model and our CPNet model on Something-Something
and Jester datasets. Lastly in section G we provide time
complexity of our model and in section H we provide more
visualization results on all three datasets.

B. CPNet Architecture in Kinetics/ResNet-18
Experiments

Our CPNet is instantiated by adding a CP module af-
ter the last convolution layer of a residual group but before
ReLU, as illustrated in Figure 1. For Kinetics/ResNet-18
experiments in main paper section 5.1 and 5.2, each CP
module has MLP with two hidden layers. Suppose the num-
ber of channels of the input tensor of CP module is C. The
number of channels of the hidden layers in the MLPs is then
[C/4, C/2]. The number of nearest neighbors k is set to 8
for the results in Table 3(a)(c)(d) of the main paper. k varies
for the results in Table 3(b). The location of CP module is
deduced from the last column of Table 1 for different exper-
iments in section 5.1 of the main paper.

C. Baseline Architectures in Kinetics/ResNet-
18 Comparison Experiment

In Table 1, we listed all the architectures used in
Kinetics/ResNet-18 comparison experiments, as a supple-
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Figure 1: CP module inserted into a residual group of
ResNet-18 backbone.

 CP

2D
 C

on
v

B
N

R
eL

U

2D
 C

on
v

B
N

R
eL

U

+

...

MLP

k-
N

N
 

G
ro

up
in

g

+

2D
 C

on
v

B
N

R
eL

U

Figure 2: CP module inserted into a residual group of
ResNet-101 backbone.

mentary to Table 2 of the main paper. C2D/C3D are vanilla
2D or 3D CNN. ARTNet is pulled directly from [6]. It
was designed to have the same number of parameters as
its C3D counterpart. NL Net model is adapted from [7],
by adding an NL block at the end of each residual group
of C2D ResNet-18. CPNet is instantiated in the same way
as illustrated in Figure 1. Combined with results in Table
3(d) of the main paper, our CPNet outperforms NL Net and
ARTNet in terms of validation accuracy with fewer param-
eters, showing its superiority.

D. CPNet Architecture in Kinetics/ResNet-101
Experiment

We listed CPNet architecture used in Kinetics/ResNet-
101 experiment in Table 2. Each residual group in ResNet-
101 has three convolution layers. Our CPNet is instantiated
by adding a CP module after the last convolution layer of a
residual group but before ReLU, as illustrated in Figure 2.
Suppose the number of channels of the input tensor of CP
module is C. The number of channels of the hidden layers
in the MLPs is then [C/16, C/8]. The number of nearest
neighbors k is set to 4.

We used five CP modules in the architecture. Two CP
modules are in res3 groups with spatial resolution of 28×28
and the rest three are in res4 groups with spatial resolution
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Table 1: Complete Architectures used in Kinetics dataset comparison experiments.

layer output size C2D (C3D) ARTNet [6]
NL C2D Net

6 NL blocks [7]
CPNet (Ours)
6 CP modules

conv1 56× 56× 8
7× 7(×3), 64,
stride 2, 2(, 1)

SMART 7× 7× 3, 64,
stride 2, 2, 1

7× 7, 64,
stride 2, 2

7× 7, 64,
stride 2, 2

res2 56× 56× 8

[
3× 3(×3), 64
3× 3(×3), 64

]
× 2

[
3× 3× 3, 64

SMART 3× 3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 2

res3 28× 28× 8

[
3× 3(×3), 128
3× 3(×3), 128

]
× 2

[
3× 3× 3, 128

SMART 3× 3× 3, 128

]
× 2

3× 3, 128
3× 3, 128
NL block

× 2

3× 3, 128
3× 3, 128
CP module

× 2

res4 14× 14× 8

[
3× 3(×3), 256
3× 3(×3), 256

]
× 2

[
3× 3× 3, 256

SMART 3× 3× 3, 256

]
× 2

3× 3, 256
3× 3, 256
NL block

× 2

3× 3, 256
3× 3, 256
CP module

× 2

res5 7× 7× 8

[
3× 3(×3), 512
3× 3(×3), 512

]
× 2

[
3× 3× 3, 512
3× 3× 3, 512

]
× 2

3× 3, 512
3× 3, 512
NL block

× 2

3× 3, 512
3× 3, 512
CP module

× 2

1× 1× 1 global average pooling, fc 400

params (M) 10.84 (31.81) 31.81 10.88 10.86

Table 2: CPNet Architectures used in Kinetics large model
experiments.

layer output size CPNet, 5 CP modules

conv1 56× 56× 8
7× 7, 64,
stride 2, 2

res2 56× 56× 8

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

res3 28× 28× 8

1× 1, 128
3× 3, 128
1× 1, 512

× 2
1× 1, 128
3× 3, 128
1× 1, 512
CP module

× 2

res4 14× 14× 8

 1× 1, 256
3× 3, 256
1× 1, 1024

× 20
1× 1, 256
3× 3, 256
1× 1, 1024
CP module

× 3

res5 7× 7× 8

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

1× 1× 1 global average pooling, fc 400

14×14. Such mixed usage of CP modules at residual groups
of different spatial resolutions enables correspondence and
motion in different semantic level to be learned jointly. We
only listed the case of using 8 frames as input. For 32-
frame input, all “8” in the second column of Table 2 should
be replaced by 32.

E. Architecture used in Something-Something
and Jester Experiments

We listed the CPNet architectures used in Something-
Something [3] and Jester [5] experiments in Table 3. CPNet
is instantiated in the same way as illustrated in Figure 1.
Suppose the number of channels of the input tensor of CP
module is C. The number of channels of the hidden layers
in the MLPs is then [C/4, C/2]. The number of nearest
neighbors k is set to 12.

We used five CP modules in the architecture. Two CP
modules are in res3 groups with spatial resolution of 28×28
and the rest three are in res4 groups with spatial resolution
14×14. We only listed the case of using 12 frames as input.
For 24- or 48-frame input, all “12” in the second column of
Table 2 should be replaced by 24 or 48.

F. Per-class accuracy of Something-Something
and Jester models

To understand the effect of CP module to the final per-
formance, we provide the CPNet’s per-class top-1 accuracy
gain compared with the respective C2D baseline on Jester
in Figure 3 and Something-Something in Figure 5.

We can see that categories that strongly rely on motion
(especially in long-range) in videos typically have large ac-
curacy improvement after adding CP module. On the other
hand, categories that doesn’t require reasoning motion to
classify have little or negative gain in accuracy. The results
coincide with our intuition that CP module effectively cap-
tures dynamic content of videos.

On Jester dataset [5], the largest accuracy improvements
are achieved in categories that involve long-range spatial
motion such as “Sliding Two Fingers Up”, or long-range
temporal relation such as “Stop Sign”. At the same time,



Table 3: CPNet Architectures used in Something-
Something and Jester dataset experiments.

layer output size CPNet, 5 CP modules

conv1 56× 56× 12
7× 7, 64,
stride 2, 2

res2 56× 56× 12

[
3× 3, 64
3× 3, 64

]
× 3

res3 28× 28× 12

[
3× 3, 128
3× 3, 128

]
× 23× 3, 128

3× 3, 128
CP module

× 2

res4 14× 14× 12

[
3× 3, 256
3× 3, 256

]
× 33× 3, 256

3× 3, 256
CP module

× 3

res5 7× 7× 12

[
3× 3, 512
3× 3, 512

]
× 3

1× 1× 1 global average pooling, fc 174 or fc 27
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Figure 3: Per-class top-1 accuracy gain in percentage on
Jester v1 dataset due to CP module.

categories that don’t even need multiple frames to classify,
such as “Thump Up” or “Thumb Down”, have the smallest
accuracy gain.

On Something-Something dataset [3], the largest accu-
racy improvements are achieved in categories that involve
long-range spatial motion such as “Moving away from
something with your camera”, or long-range temporal re-
lation such as “Lifting up one end of something without
letting it drop down”. At the same time, categories that
don’t even need multiple frames to classify, such as “Show-
ing a photo of something to the camera”, have the smallest
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Figure 4: Model run time (solid line) and number of video
sequences per second (dashed line) of CPNet with ResNet-
34 backbone and spatial size 112× 112.

or negative accuracy gain .

G. Model Run Time

In this section, we provide time complexity results of
our model. Our CP module can be very efficient in term of
computation and memory, for both training and inference.

During training, NL Net [7] computes a THW ×THW
matrix followed by a row-wise softmax. The whole pro-
cess is differentiable and all the intermediate values have
to be stored for computing gradients during back propaga-
tion, which causes huge overhead in memory and compu-
tation. Unlike NL Net, our CP module’s computation of
a THW × THW matrix results in k integers used for in-
dexing, which is non-differentiable. Thus CPNet doesn’t
compute gradients or store the intermediate values of the
THW ×THW matrix, a huge saving compared to NL Net
and all other works involving global attention.

During inference, our CPNet is also efficient. We evalu-
ate the inference time complexity of the CPNet model used
in Jester v1 experiment. The spatial size is 112 × 112.
The model backbone is ResNet-34. The computing plat-
form is an NVIDIA GTX 1080 Ti GPU with Tensorflow
and cuDNN. The model performances with various batch
sizes and frame lengths are illustrated in Figure 4. With
batch size of 1, CPNet can reach processsing speed of 10.1
videos/s for frame length of 8 and 3.9 videos/s for frame
length of 32. The number of videos that can be processed
in a given time also increases as batch size increases.

We point out that there exist other more efficient imple-
mentations of CP module. In the main paper, we only pre-
sented the approach of the finding per-point k-NN in a point
cloud via computing a pairwise feature distance matrix of
size THW × THW followed by a row-wise arg top k,
which has time complexity ofO((THW )2 · (C+ k)). This
is the most convenient way to implement in deep learning
frameworks such as Tensorflow. However, when deployed
on inference platforms, per-point k-NN can be computed by
much more efficient approaches with geometric data struc-
tures such as k-d tree [1] or Bounding Volume Hierarchy
(BVH) [2] in C dimensional space. The time complexity
will then be O((THW ) log(THW ) · (C + k)), which in-
cludes both the construction and traversal of such tree data



structure. Accelerating k-d tree or BVH on various plat-
forms is an ongoing research problem in the computer sys-
tems & architectures community and is not the focus of our
work.

H. More Visualizations
In this section, we provide more visualizations on exam-

ples from Kinetics [4] in Figure 6, Something-Something
[3] in Figure 7 and Jester [5] in Figure 8. They further show
CP module’s ability to propose reasonable correspondences
and robustness to errors in correspondence proposal.

Despite what has been shown in the main paper, we also
notice some negative examples. For example, in Figure
6(a), when proposing correspondences of the boy’s left ice
skate, CP module incorrectly proposed the a girl’s left ice
skate due to the two ice skates’ visual features being too
similar. CP module also didn’t completely overwhelm this
wrong proposal after max pooling. However, we notice that
this wrong proposal is weak in the output signal: it only
activates 3 out of 64 channels during max pooling which
is acceptable. We point out that such “error” could also be
fixed in later stages of the network or even be beneficial for
applications that require reasoning relations between simi-
lar but different objects.
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Figure 5: Per-class top-1 accuracy gain in percentage on Something-Something v2 dataset due to CP module.
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(a) A video clip with label “ice skating” from Kinetics validation set.
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(b) A video clip with label “riding a bike” from Kinetics validation set.

82.19

17.92

66.98

22.78

1st 
CP

3rd 
CP

(c) A video clip with label “driving tractor” from Kinetics validation set.

Figure 6: Additional Visualization on our final models on Kinetics dataset. Approach is the same as the main paper.
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(a) A video clip with label “Turning something upside down” from Something-Something v2 validation set.
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(b) A video clip with label “Picking something up” from Something-Something v2 validation set.
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(c) A video clip with label “Moving something down” from Something-Something v2 validation set.

115.11

28.97

46.36

8.13

1st 
CP

3rd 
CP

(d) A video clip with label “Dropping something next to something” from Something-Something v2 validation set.

Figure 7: Additional Visualization on our final models on Something-Something v2 dataset. Approach is the same as the
main paper.
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(a) A video clip with label “Drumming Fingers” from Jester v1 validation set.
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(b) A video clip with label “Shaking Hand” from Jester v1 validation set.
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(c) A video clip with label “Stop Sign” from Jester v1 validation set.
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(d) A video clip with label “Pushing Two Fingers Away” from Jester v1 validation set.

Figure 8: Additional Visualization on our final models on Jester v1 dataset. Approach is the same as the main paper.


