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1. Additional experimental results and details
1.1. Additional synthetic dataset Demonstrating

rate-invariance property of TTN:

In this case, we construct a dataset such that rate varia-
tions in the signals are the major nuisance parameter. In this
scenario, intuitively, minimizing classification error should
lead to the following: different signals belonging to the
same class, but differing (approximately) only by a γ should
come closer to each other after passing through a trained
TTN module. In class 1, we have signals which are a a
mixture of two Gaussian functions with random warping
applied and additive Gaussian noise added to them. Signals
in class 2 are similar except that they are a single Gaussian
function with the same mean and variance. As before, we
generated 8000 training sequences and 2000 test sequences
evenly balanced between classes 1 and 2. These are shown
before (Column 1) and after random warping (Column 2) in
Figure 1. The TTN, classifier and the training and testing
protocol are the same as in dataset (1) above. From column
3 in Figure 1, it is clear the TTN leads to reduction in intra-
class rate variations. Table 1 shows the classification accu-
racies obtained with and without the TTN module (averaged
over 10 runs). When no warping is present in the input data,
both variants yield perfect accuracy. When warping is intro-
duced in the dataset, the performance of the vanilla model
(i.e., without TTN) drops significantly. With the addition
of the TTN module, most of the lost performance can be
recovered.

Vanilla TTN
Unwarped 100.00 ± 0.00 % 100.00 ± 0.00 %

Warped 96.31 ± 0.021 % 99.03 ± 0.15 %
Table 1. Recognition results (%) for synthetic dataset 2. Addition
of TTN clearly outperforms the baseline.

1.2. ICL First-Person Hand Action Dataset [1]

Training protocol details omitted in the main paper
in Section 5.2: Both the classifier and the TTN are trained
with momentum optimizer with momentum set to 0.9. A

batch size of 16 is used and the networks are trained for
50000 iterations. We use an initial learning rate of 10−3 for
the classifier and and 10−4 for the TTN. The learning rate
is reduced to one-tenth after 35000 and 45000 iterations.

1.3. NTU RGB-D Dataset

TCN architecture and training details: We use the
Temporal Convolution Network (TCN) described in [2].
The network consists of 10 convolutional layers with batch
normalization and ReLU non-linearity. The network can be
divided into 3 blocks of conv layers. After each block, the
first conv layer of the next block is of stride 2 such that the
inputs for successive block are of length half of that of the
previous block. Residual connections are employed in the
network as well. All the convolutional filters are of size 8.
The convolutional layers produce 64,128 and 256 feature
maps for blocks 1, 2 and 3 respectively. We use momentum
optimizer with momentum 0.9 and initial learning rate of
5×10−3. The network is trained for 2×105 iterations with a
batch size of 72, and the learning rate was reduced one-tenth
the value after 105 and 1.5 × 105 iterations. We found this
to be these values of the hyperparameters to be the optimal
setting for the baseline classifier network. While training,
the TTN parameters are updated at one-tenth the learning
rate of the TCN.

Ablation study for the TCN: We study the effect of the
number of layers in the classifier network on the perfor-
mance. The TCN architecture consists of 3 blocks of conv
layers. We remove 1 block at a time and compare the cross-
subject classification rate. The results are shown in Table 2.
We see that the addition of the TTN produces better results
in all cases.

Ablation study for the TTN module: We study the
effect of the number and type (convolutional or fully-
connected) of layers in the TTN on the cross-subject clas-
sification performance. The results are shown in Table 3.
We see that the architecture of the TTN indeed has a sig-
nificant effect on the performance. However, irrespective of
the TTN architecture, addition of the TTN produces better
performance in all cases.
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Figure 1. Results on synthetic dataset 2. Rows 1 and 2 show waveforms corresponding to classes 1 and 2 respectively. Columns 1, 2 and
3 show the clean waveforms, test inputs (after random warping) and the TTN outputs respectively. It is clear by comparing these columns
that the TTN outputs are much more closely clustered especially for class 2, showing that the TTN outputs are robust to rate-variations.
Column 4 is a better visualization of column 3 after some post-processing making the mean of the generated warping functions γµ = γId.

Method w/o TTN (%) w/ TTN (%)
TCN (4 layers) 70.72 71.63
TCN (7 layers) 75.06 75.30
TCN (10 layers) 76.54 77.55

Table 2. Ablation results on the TCN for the NTU database. Cross-
subject action recognition results show that the TTN+TCN consis-
tently performs better than TCN for different sizes of TCN.

Figure 2. t-SNE plots for the test set features for the NTU dataset
with and without TTN. When the TTN is employed, we see better
separation in the clusters.

t-SNE plot: Using the features of the last layer of the
TCN with 10 layers, we have computed the t-SNE plots
with and without TTN for the NTU cross-subject test set.
When the TTN is employed, we see better separation in the
clusters as shown in Figure 2.

Method Accuracy (%)
Baseline TCN [2] 76.54

2 conv + 3 FC 77.55
1 conv + 3 FC 77.26
0 conv + 3 FC 76.90
2 conv + 2 FC 77.20
2 conv + 1 FC 77.12

Table 3. Ablation results on the TTN for the NTU database using
TCN as the classifier [2]. Cross-subject action recognition results
show that the TTN+TCN consistently performs better than TCN
for different sizes of TTN.
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