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A. Reprojection loss
Initially, we experimented with another loss, which we

call reprojection loss. This type of loss was directly in-
spired by the reprojection error which is common in many
3D computer vision problems.

First, a regular grid of points in pixel coordinates
x1 . . .xn spanning the extent of the image is projected onto
the unit sphere using the ground truth parameters Ω, re-
sulting in a set of 3D points which we refer to as bearings
p1 . . .pn. Then, the predicted parameters Ω′ are used to
project the bearings back to the image plane, yielding points
x′
1 . . .x

′
n. The distance between the original grid and the

reprojected points is the error to be minimized. This error
is directly measured in pixel coordinates.

The reprojection step from p1 . . .pn to x′
1 . . .x

′
n is dif-

ferentiable and can be optimized using gradient-based tech-
niques. An illustration of a simplified version of this process
using only two parameters f and θ is depicted in Fig. 1.

Unlike the bearing loss presented in the main paper,
there is no need for differentiable undistortion, since only
the ground truth grid needs undistortion. However, the re-
projection loss presents a behavior that is highly problem-
atic for training: Depending on the combination of Ω and
Ω′, points x′

1 . . .x
′
n may be projected very far away from

the original grid x1 . . .xn as shown in Figure 2, creating
outliers with large gradients that destabilize the learning
process. We tried to solve this problem by replacing the
squared distance metric by several robust metrics, as well
as clipping of the distances. Such a strategy complicates
matters as at least one new hyperparameter is required (i.e.
a threshold for clipping or a scaling factor for robust func-
tions). Ultimately, even with these measures, the bearing
loss presented in the main paper converged faster than the
reprojection loss.
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Figure 1. A simplified depiction of the reprojection loss using only
two parameters (tilt θ and focal length f ). Points x1 . . .xn in 2D
image coordinates are projected onto 3D points p1 . . .pn on a unit
sphere using the ground truth camera parameters f, θ. The points
are then reprojected onto the image plane using the parameters
f ′, θ′ predicted by the model. The average squared distance from
each point xi to its reprojection x′i is the reprojection loss.
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Figure 2. With the reprojection loss, points may be projected in-
finitely far away depending on the combination of the ground truth
Ω and estimated Ω′ parameters, producing large gradients that un-
stabilize learning.
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B. Learned vs. Geometric-based Undistortion
To our knowledge, our method is the first to include dis-

tortion correction from a single image for projective cam-
eras in the wild. Previous learning-based techniques either
focused on fisheye distortion [1] or relied on datasets of im-
ages containing a sufficient amount of line segments with a
specific length [2]. In this context, we focus on comparing
the performance of our method with respect to plumb-line
methods, that represent a classic and geometric-based solu-
tion to single-image undistortion [3, 4, 5].

Plumb-line methods estimate lens distortion based on
the curvature of straight lines in the image [4]. Common
steps of this family of algorithms are: 1. sub-pixel edge de-
tection, 2. extraction of segment candidates, 3. optimiza-
tion loop to estimate the distortion coefficients. Although
potentially very precise, these methods struggle in scenes
where straight lines are hard to detect or to discern from
other sources of strong gradients, as in Figure 3. Moreover,
the segment detection procedures usually require a careful
tuning of several parameters. Instead of following an im-
age processing approach, learning-based methods can de-
tect subtler lines, as well as other indicators of radial distor-
tion that might not be straight lines. For numerical evidence,
we compare our method with a state of the art plumb-line
algorithm by Santana-Cedrés et al. [6].

Since [6] uses a parameterization for radial distortion
different to ours, we compare the methods by the photomet-
ric mean squared error with respect to images undistorted
using the ground truth coefficients [7]. We perform this
comparison on our test set. The plumb-line algorithm also
expects input images to have a higher resolution, so instead
of scaling to 224 × 224 pixels as required by our network,
we feed it with images of 712 pixels in the shortest side.

We obtain a lower MSE in 89% of the images in the test
set, but notice differences depending on the category of the
source panorama. As shown in Figure 4, for outdoor im-
ages with few or no line segments (nature landscapes or
open spaces with trees/monuments, e.g. beach, forest, plaza
categories), our method performs best in more than 90%
of the images. The difference narrows down for indoor
and urban imagery, with our method outperforming [6] in
70-90% of the cases, depending on the category. This is
expected as there are more line segments in images from
these classes that the plumb-line algorithm can rely on (e.g.
office, restaurant, street categories).

In terms of speed, the runtime for plumb-line meth-
ods depends on the number of segments that are detected,
while methods based on CNNs have a constant execution
time. We benchmark both methods’ runtime on an Intel E5-
2690v3 CPU and report an average runtime of 10.04s per
image for the plumb-line method, while our method takes
0.33s per image. Our runtime is reduced to 1ms per image
with a NVIDIA K80 GPU.

C. Qualitative results
We show qualitative results for our method on a set of

images in Figure 5. These were not randomly selected but
intended to showcase a variety of interesting examples, as
we have already reported about the quantitative evaluation
on the full test set in the main paper. Images on the top
row have been downloaded from Mapillary and were taken
using real cameras, while those on the bottom row are from
our test set, generated by cropping and distorting panoramas
from SUN360 [8].

Each image is fed to the network to obtain the predic-
tions of the proxy parameters (k̂1, ρ, ψ, Fv) from which we
recover the original parameters (k1, k2, θ, ψ, f). These are
used to undistort each image and to overlay a horizon line.
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Figure 3. Plumb-line methods optimize the distortion parameters based on the curvature of segments that belong to straight lines in the 3D
world. Robustly identifying such segments is not trivial: Here, the most relevant lines for the task are the ceiling beams, which remain
undetected due to their low contrast. In parallel, the curtain folds and the pirate’s sash, less significant, are detected as their edges are sharp.
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Figure 4. A comparison between learned and geometric-based single image undistortion in the wild, as evaluated in our test images
generated from SUN360. Each bar represents the percentage of samples per method that achieved the lowest MSE with respect to the
ground truth undistorted images. Certain categories depicting similar scenarios were merged to balance the number of samples per bar.



Figure 5. Qualitative results of our undistortion and tilt/roll estimation. Images in the first and second rows were collected from Mapillary
and are from real cameras (not strictly following our distortion parametrization), while images in the third row are from our test set. For
each image, the original version that is used as input to the network is displayed on the top, and the result of undistorting it using the
predicted distortion parameters is shown on the bottom. We also overlay a horizon line in green using the rest of the predicted parameters.


