A. Supplementary appendix
A.1 Implementation details

Network details. In terms of the matchability predictor,
we construct 4-layer MLPs whose output node numbers are
128, 32, 32, 1, respectively. The visual context encoder
is composed of two 2-layer MLPs, located before/after the
concatenation with raw local features. We insert context
normalization only into the former MLPs, while insertion
in the latter one is observed to harm the performance.

Performance of the retrieval model. The retrieval model
is trained on Google-Landmarks Dataset [28], which con-
tains more than 1M landmark images. In our experiments,
we have compared different networks for the retrieval per-
formance. In brief, ResNet-101 is slightly better than
ResNet-50, while VGG and AlexNet are notably underper-
forming. We choose ResNet-50 for better tradeoffs in mem-
ory and speed.

Instead of adopting the training scheme in [33], we find
that the model pretrained on landmark classification task
(containing 15K classes) as in [28] suffices to produce satis-
factory results in practice, and avoids difficulties on prepar-
ing training data for Siamese networks or hard negative
mining with complex heuristics. We have evaluated the re-
trieval model with MAC aggregation on standard Oxford
buildings dataset [29], where we obtain mAP of 0.83, on
par with [33] of 0.80.

Keypoint coordinate augmentation. Similar to [0], we
choose to use 4-point parameterization to represent the ho-
mography as follows:
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where (u1,v1), (ug,v2), (us, vs), (ug,vy) are four corner
points at (—1,1),(1,1),(-=1,-1),(1,-1), and Au;, Av;
are random variables between (—0.5,0.5). One can easily
convert Hypoins to a standard 3 x 3 homography by, e.g.,
normalized Direct Linear Transform (DLT) algorithm. In
our implementation, we apply the random homography on
each keypoint coordinate set before feeding it into the geo-
metric context encoder.

Learning with noisy keypoints. The training of proposed
framework, apparently, needs to be conducted between im-
age pairs instead of isolated patches, since we also take
keypoint coordinates as input. Such data organization is
referred to as simulating image matching in [23]. How-
ever, the simulation in [23] is not complete, as it consid-

ers only keypoints that have successfully established cor-
respondences, whereas in real situation, only a subset of
keypoints is repeatable in other images. In practice, as il-
lustrated in Fig. 6, we divide keypoints obtained from SfM
as in [48, 23] into three categories: i) Matchable: repeat-
able and verified by SfM; ii) Undiscovered: repeatable but
did not survive the SfM. iii) Unrepeatable: unable to be re-
detected in other images.

In the training, we randomly sample a number of match-
able keypoints as well as some undiscovered and unrepeat-
able keypoints (denoted as noisy keypoints), in order to have
a complete simulation that is necessary to acquire strong
generalization ability. Otherwise, the training will consider
only ideal setting with all matchable keypoints, which is in-
consistent with real applications.
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Figure 6: We divide keypoints after SfM into three cate-
gories: matchable (green), undiscovered ( ) and unre-
peatable (red), and aim to perform a complete simulation in

training that incorporates all three types of keypoints.

To incorporate with the above training strategy, we need
to make some adaptation on the loss formulation. For-
mally, given index sets C,, = {i1,...,ix, } and C,, =
{i1,...,iK, }, where K,,, and K, are numbers of matchable
and noisy keypoints for an image pair, the losses of Eq. 3

and Eq. 5 are now rewritten as:
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Subsequently, adding noisy keypoints will first influence
the encoding of geometric context, posing a harder train-
ing settings and playing a key role in order to acquire the
invariance properties. Second, it will influence the com-
putation of Ln.pair, as those keypoints will be all cross-
paired as negative samples. It also enables us to increase
the pair number in each batch, i.e., 1024 in our implemen-
tation compared with 64 in GeoDesc [23], which boost the
effectiveness of N-pair loss as observed in [25].

Further joint processing in aggregation step. In this
work, as in Sec. 3.4, we simply sum and normalize the



cross-modality features for aggregation. Meanwhile, we
have also attempted to make this module learnable by
concatenating and feeding the features to several fully-
connected layers. However, the experimental results
showed a considerable performance decrease from such
choice, i.e., 2 points decrease on HPatches even compared
with the base model, GeoDesc. Our observation is that the
raw local features are supposed to be preserved as much as
possible, and a learnable aggregation would result in over-
parameterization and inability to represent the local detail.

A.2 Training with softmax temperature

We plot the growth of softmax temperature and its re-
spective loss decrease in Fig. 7. As can be seen, the softmax
temperature fast grows at the beginning and gradually con-
verges to a constant value, ~38. As mentioned in Sec. 3.5,
the softmax temperature is regularized with the same net-
work weight decay, whereas we have observed that eschew-
ing the regularization does not harm the performance, but
results in a larger temperature value, i.e., ~42.
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Figure 7: Left: the growth of scale temperature. Right: the
respective decrease of loss.

A.3 Ratio test

In previous experiments on image matching, we did
not apply any outlier rejection (e.g., mutual check, ratio
test [22]) for all methods for fair comparison, whereas the
early outlier rejection is critical and necessary to later ge-
ometry computation, e.g., recovering camera pose. In par-
ticular, ratio test [22] has demonstrated remarkable success,
we thus follow the practice in [23] to determine the ratio
criteria of the proposed augmented descriptor. Specifically,
given # Correct Matches defined in Sec. 4.3, we test on
HPSequence [2] and aim to find a proper ratio that achieves
Precision = # Putative Matches | # Correct Matches simi-
lar to SIFT. As a result, we choose 0.89 for the proposed
descriptor.

To demonstrate the efficacy of the obtained ratio, we
evaluate on the wild indoor/outdoor data [47, 42] with an
error metric of relative camera pose accuracy. Following
the protocols defined in [49], we use mean average preci-
sion (mAP) of a certain threshold (e.g., 20°) to quantify the
error of rotation and translation. For comparison, we use ra-
tio criteria of 0.80 for SIFT [22] and 0.89 for GeoDesc [23],

SIFT[22] GeoDesc[23] Ours

ratio criteria 0.80 0.89 0.89
mAP of pose (error threshold 20°)

indoor 374 41.8 42.9

outdoor 17.9 20.5 22.5

Table 7: Pose evaluation on wild datasets with ratio test ap-
plied: indoor SUN3D [47] and outdoor YFCC100M [42].

and present evaluation results in Tab. 7, which demonstrates
consistent improvements with proper outlier rejection.

A .4 Different domain sizes

Somewhat counter-intuitively, the CS structure improves
marginally on image matching tasks as reported in Tab. 1.
To further study this phenomenon, we compare the patch
sampling from different domain sizes, including the original
SIFT’s (1x) as used in previous experiments, half (0.5x)
or double (2x) sizes. We also compare the aggregation of
multiple sizes, i.e., the original and halved (1 + 0.5)x or
the original and doubled (1+ 2) x. Instead of concatenating
features as used by CS structure, we apply simple summing-
and-normalizing aggregation in Sec. 3.4 to avoid increasing
the dimensionality.

We experiments with our ContextDesc+ model in Tab. 1,
and present the comparison results with different domain
sizes in Tab. 8. As can be seen, when only single size is
adopted, the original ‘1x’ performs best as being consis-
tent with the training. In addition, when combining a larger
size ((1 4 2) %), we can further boost the proposed method
by a considerable margin, yet leading to excessive computa-
tional cost and doubling the inference time. In practice, the
aggregation with different domain sizes is compatible with
the proposed framework, and can be applicable when high
accuracy is in demand.

domain size Recall iy
0.5x 61.59 | 69.79
2% 62.84 | 71.86
1x (ContextDesc+) | 67.14 | 76.42
(14+0.5)x 67.31 | 76.16
(1+2)x 67.74 | 77.51

Table 8: The efficacy of extracting local features from dif-
ferent domain sizes.

A.5 Invariance to density change

We further demonstrate the robustness regarding density
change on HPSequences [2], of which images are feature-
rich and have keypoints up to 15k. Beside of sampling key-
points of different numbers, we consider a more challenging
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Figure 8: Visualizations of SfM results of Sec. 4.5 from the proposed augmented feature.

case where all detected keypoints are used. As presented in
Fig. 9, the proposed method delivers consistent improve-
ments in terms of all cases, which demonstrates the reliable
invariance property acquired by context encoders.
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Figure 9: The performance of proposed augmentation
scheme regarding density change of keypoints.

A.6. Efficacy of the matchability predictor

To better interpret the functionality of the proposed
matchability predictor in Sec. 3.2, we quantitatively eval-
uate its performance being used as a keypoint detector. Fol-
lowing [35], we apply the matchability predictor onto the
entire image, then select 2048 top responses after NMS as
keypoints. whose performance is measured by Repeatabil-
ity. Compared with SIFT detector, the results are improved
from 32.81 to 37.93 and 25.53 to 26.34 on i/v sequences of
HPatches. While the detector performance is not the focus
of this paper, we believe that by adopting more advanced
techniques, this module will potentially benefit to the joint
training of keypoint detector and descriptor, and have large
rooms for future improvements.

A.7 Application on image retrieval

We use an open-source implementation of Vocab-
Tree' [39] for evaluation image retrieval performance, and
compare SIFT [22], GeoDesc [23] and the proposed Con-
textDesc. The mAPs on Paris dataset [30] from three com-
petitors are 49.89, 53.84 and 61.29, while on Oxford build-
ings [29] are 47.27, 53.29 and 61.64. By re-ranking the
top-100 by spatial verification [29], the mAPs on Paris are
improved to 52.23, 55.02 and 64.53, while on Oxford are
51.64 , 54.98 and 65.03. The experimental results effec-
tively demonstrate the superiority of the proposed method.

A.8 More visualizations

We have provided more visualizations of previous exper-
iments in Fig. 8 (SfM results in Sec. 4.5) and Fig. 10 (image
matching results w.r.t different image transformations).

Uhttps://github.com/hlzz/libvot
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Figure 10: Image matching results after RANSAC. From top to bottom: SIFT, GeoDesc and proposed augmented feature.





