
Domain Alignment

Source DomainTarget Domain

Source DomainTarget Domain

Class Alignment Loss

Adversarial Loss

Pseudo-labeled Target Features

Labeled Source Features

Ground Truth

Pseudo-label 

CNN

Data Structure Analyzer (DSA)

Hidden Layers

Structure-aware Alignment  ( Feature Extractor  G) Class Centroid Alignment

Structure Scores

Classifier  F 

CNN feature

GCN feature

Domain Classifier  D

Figure 1. The architecture of the proposed Graph Convolutional Adversarial Network (GCAN). Our GCAN consists of three alignment
mechanisms including structure-aware alignment, domain alignment, and class centroid alignment. In the structure-aware alignment, the
Data Structure Analyzer network generates structure scores encoded with source data structure information while the CNN features are
extracted by CNNs. Then, the structure scores and CNN features are used to construct dense-connected instance graphs for the GCN. The
concatenated CNN and GCN features are input to the domain alignment and class centroid alignment modules. In the domain alignment,
a domain alignment loss is applied to match the global domain statistics. In the class centroid alignment, pseudo-labeled target features
and labeled source features are used to calculate the class centroid alignment loss to ensure that samples with same class from different
domains can be embedded closely. For more details, please refer to the main body of the paper.
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1. Additional Experiments
In this section, we first illustrate the datasets, baseline methods and implementation details. Then, we show extensive

experimental results and analysis on Office-Caltech and MNIST-USPS-SVHN. After that, we explore the ablation study and
parameters analysis on GCAN. Finally, we show quantities of visualization results on Office-31, ImageCLEF and Office-
Home.

1.1. Datasets

Office-Caltech released by [2], is comprised of 10 common categories shared by the Office-31 and Caltech-256 datasets. In
our experiments, we construct 12 tasks across 4 domains: Amazon (A), Webcam (W), DSLR (D) and Caltech (C), with 958,
295, 157 and 1,123 image samples respectively.
MNIST-USPS-SVHN. We explore three digits datasets: MNIST [4], USPS and SVNH [9]. Different from Office-31, MNIST
consists grey digits images of size 28×28, USPS contains 16×16 grey digits and SVHN composes color 32×32 digits images
which might contain more than one digit in each image. MNIST-USPS-SVHN makes a good complement to previous datasets
for diverse domain adaptation scenarios. We conduct experiments on two tasks: SVHN→MNIST and MNIST→USPS. Digit
images are also cast to 28×28×1 in all experiments for fair comparison.

1.2. Baseline Methods

As for the Office-Caltech dataset, we compare with some representative shallow and deep transfer learning methods:
Transfer Component Analysis (TCA) [11], Geodesic Flow Kernel (GFK) [2], Deep Domain Confusion (DDC) [14], Gradient
Reversal (RevGrad) [1], Residual Transfer Network (RTN) [6], and Moving Semantic Transfer Network (MSTN) [15]. All
results are directly cited from these published papers except MSTN whose results are obtained by runing the released code1

by ourselves.
To further validate our method, we also conduct experiments on MNIST-USPS-SVHN. We compare with Deep Domain

Confusion (DDC) [14], RevGrad [1], Asymmetric Tri-Training [12], Couple GAN (CoGAN) [5], Label Efficient Learning
(LEL) [7], Adversarial Discriminative Domain Adaptation (ADDA) [13], Moving Semantic Transfer Network (MSTN) [15].
Results of DDC, RevGrad, CoGAN, ADDA and MSTN are cited from [13]. For the rest, we cite the results in their papers
respectively.

1.3. Implementation Details

For Office-Caltech dataset, we apply the same network architecture and experimental settings as Office-31, ImageCLEF-
DA and Office-Home. For digits datasets, we redesign four modules in our model, i.e., CNNs, Data Structure Analyzer
(DSA), Domain Classifier, and GCNs. For CNNs, we use the same architecture as ADDA [13]: two convolution layers
followed by max pool layers and two fully connected layers are placed behind. The Data Structure Analyzer (DSA) is
implemented as the LeNet trained on source data with the triplet loss. For the architecture of GCNs, we only use one GCN.
The dimension of node representation is 10 and the output dimension is 3. For Domain Classifier, we also use the same
architecture as ADDA, e.g., x→500→500→1. Batch Normalization is inserted between convolutional layers.

1.4. Results and Analysis

Office-Caltech. From the results, we can draw the following conclusions. (1) Standard deep learning methods (AlexNet)
perform comparably with traditional shallow transfer learning methods with deep DeCAF7 features as input (TCA and
GFK). The only difference between these two sets of methods is that AlexNet can take the advantage of supervised fine-
tuning on the source-labeled data, while TCA and GFK can take benefits of their domain adaptation procedures. This result
confirms the current practice that supervised fine-tuning is important for transferring source classifier to target domain [10].
(2) Deep transfer learning methods that reduce the domain discrepancy by domain-adaptive deep networks (DDC, DAN,
RevGrad, RTN and MSTN), substantially outperform standard deep learning methods (AlexNet) and traditional shallow
transfer learning methods with deep features as the input (TCA and GFK). (3) The proposed GCAN performs the best
and proves the effectiveness of jointly leveraging data structure, domain label and class label information in a unified deep
network.
MNIST-USPS-SVHN. We follow the protocols in [13]: For adaptation between SVHN and MNIST, we use the training set of
SVHN and test set of MNIST for evaluation. For adaptation between MNIST and USPS, we randomly sample 2000 images
from MNIST and 1800 from USPS. For SVHN→MNIST, the transfer gap is huge since images in SVHN might contain

1https://github.com/Mid-Push/Moving-Semantic-Transfer-Network



multiple digits. Results of MNIST-USPS-SVHN are shown in Table 2. It shows that our model outperforms all comparison
methods. For MNIST→USPS, our method obtains a desirable performance. On the difficult transfer task SVHN→MNIST,
our model outperforms existing methods.

Table 1. Classification accuracy (%) on OFFICE-10+Caltech-10 for unsupervised domain adaptation.
Source A D W A D W A W D C C C AvgTarget W W D D A A C C C A W D
TCA 84.4 96.9 99.4 82.8 90.4 85.6 81.2 75.5 79.6 92.1 88.1 87.9 87.0
GFK 89.5 97.0 98.1 86.0 89.8 88.5 76.2 77.1 77.9 90.7 78.0 77.1 85.5
AlexNet 79.5 97.7 100.0 87.4 87.1 83.8 83.0 73.0 79.0 91.9 83.7 87.1 86.1
DDC [14] 83.1 98.1 100.0 88.4 89.0 84.9 83.5 73.4 79.2 91.9 85.4 88.8 87.1
RevGrad [1] 90.8 98.3 98.7 89.2 90.6 93.8 85.7 86.9 83.7 92.8 88.1 87.9 88.9
DAN 91.8 98.5 100.0 91.7 90.0 92.1 84.1 81.2 80.3 92.0 90.6 89.3 90.1
RTN [6] 95.2 99.2 100.0 95.5 93.8 92.5 88.1 86.6 84.6 93.7 94.2 93.4 93.4
MSTN [15] 91.4 99.3 100.0 90.2 94.0 94.2 88.4 89.9 89.3 93.7 94.2 94.9 93.3
GCAN 96.1 99.4 100.0 93.9 94.6 94.2 89.3 89.5 85.8 93.8 95.9 94.3 93.9

Table 2. Classification accuracy (%) on digit recognitions tasks.
Source SVHN MNIST
Target MNIST USPS
Source Only 60.1±1.1 75.2±1.6
DDC [14] 68.1±0.3 79.1±0.5
RevGrad [1] 73.9 77.1±1.8
AsmTri [12] 86.0 -
CoGAN [5] - 91.2±0.8
ADDA [13] 76.0±1.8 89.4±0.2
LEL [7] 81.0±0.3 -
MSTN [15] 91.7±1.5 92.9±1.1
GCAN 92.0±1.0 93.3±0.9

1.5. Ablation Study

In Table 3 and Table 4, we have shown different variants of our GCAN and the corresponding results on Office-31. Based
on the results in Table 4, we can draw the following conclusions: (1) From GCAN-1 to Full GCAN, we demonstrate that
all components contribute to the final classification performance. Note that, the structure-aware alignment can increase the
performance by 2% on average, and it is quite effective for domain adaptation by modeling data structure information via the
structure-aware alignment. (2) Comparing RevGrad and GCAN-2 (MSTN and GCAN-3), we observe that the performance
cannot be improved by only expanding feature space. (3) Comparing GCAN-4 and GCAN-3, the structure-aware alignment
with triplet loss can help to refine scores features and further slightly improve performance.

1.6. Parameters sensitivity Analysis

The hyper-parameter settings have been illustrated in the main paper. These parameters (except η and αT ) are set by
following MSTN. The η and αT are set according to the results in Figure 2(1) and Figure 2(2). Moreover, we test the
robustness of our GCAN under other factors including batch size and GCN output size. Figure 2(3) shows the results of
GCAN, MSTN and RevGrad under different batch sizes. The batch size affects all methods, but our GCAN is robust and
performs the best in most cases. Figure 2(4) shows the classification accuracy with different GCN output sizes (from 50 to
250), which supports our GCAN is quite robust to the GCN output size.

1.7. Visualization

As shown in Figure 3, Figure 4 and Figure 5, we use the t-distributed stochastic neighbor embedding (t-SNE) to visualize
the learned representations on Office-31, ImageCLEF-DA and Office-Home, receptively. Results on AlexNet show the



Table 3. Ablation study for different variants of our GCAN. Domain Alignment (DA), Class Alignment (CA), Structure-aware Alignment
(SA), Triplet Loss (LT ).

Model AlexNet (256 dim) AlexNet (256+150 dim) GCN (150 dim) DA CA SA without LT SA with LT
RevGrad X X
MSTN X X X

GCAN-1 X
GCAN-2 X X
GCAN-3 X X X
GCAN-4 X X X X X

Full GCAN X X X X X

Table 4. Ablation Study: Classification accuracy (%) on the Office-31 dataset.
Method A→W D →W W → D A→ D D → A W → A Avg
RevGrad 73.0±0.5 96.4±0.3 99.2±0.3 72.3±0.3 53.4±0.4 51.2±0.5 74.3
MSTN 80.5±0.4 96.9±0.1 99.9±0.1 74.5±0.4 62.5±0.4 60.0±0.6 79.1

GCAN-1 64.2±0.3 94.7±0.2 98.8±0.2 65.5±1.0 48.6±0.5 45.5±0.5 69.6
GCAN-2 75.6±0.4 96.1±0.1 99.4±0.2 70.8±0.4 55.5±0.3 55.1±0.5 75.4
GCAN-3 77.4±0.1 96.0±0.2 99.6±0.2 74.0±0.3 62.6±0.2 61.4±0.3 78.5
GCAN-4 81.1±0.1 96.9±0.1 99.9±0.1 77.9±0.4 62.9±0.1 63.6±0.1 80.4

Full GCAN 82.7±0.1 97.1±0.1 99.8±0.1 76.4±0.5 64.9±0.1 62.6±0.3 80.6
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Figure 2. The effect of several factors on final performance.

representations without any adaptation. As we can see, the distributions are separated between domains. This highlights
the importance for transfer learning. As for results on RevGrad [1], features are successfully fused but it also exhibits a
serious problem: features generated are near class boundary. For example, features of class A in target domain could be
easily mapped to the intermediate space between class A and class B, which is obviously a damage to classification tasks.
In contrast, the representations learned by our method are more discriminative and domain-invariant. Specifically, features
in the same class are mapped closer. In particular, features with different classes are dispersed, making the features more
discriminative. The well-behaved learned features illustrate the effectiveness of jointly leveraging data structure, domain
label and class label information in a unified deep network.

2. Network Architectures and Parameters
In this section, we will introduce the network architecture and parameters in our experiments. We have designed d-

ifferent network architectures and parameter settings for different datasets, which can mainly be divided into two types:
(1) object recognition, namely, Office-31, ImageCLEF-DA, Office-Home and Office-Caltech; (2) digits recognition, e.g.,
MNIST-USPS-SVHN. For simplicity, we first define some notations about various layers in deep networks.

Let conv1 denote a convolutional layer with 96 filters with size 11×11 and stride 4. conv2 denotes a convolutional layer
with 256 filters with size 5×5 and stride 1. conv3 denotes a convolutional layer with 384 filters with size 3×3 and stride
1. conv4 denotes a convolutional layer with 384 filters with size 3×3 and stride 1. conv5 denotes a convolutional layer
with 256 filters with size 3×3 and stride 1. fc-k denotes a fully-connected with k-dimensional output. pool denotes max
pooling layer with size 3×3 and stride 1. norm denotes LRN layer proposed in [3]. drop denotes dropout layer. gcn(A,B)
denotes GCN layer with A-dimensional node representations and B-dimensional output. conv-m denotes a convolutional
layer with m filters with size 5×5 and stride 1. relu and sigmoid represent two kinds of activation functions.



Object Recognition Network Architecture.

• CNNs. We use AlexNet architecture and a bottleneck layer with 256 units is added after the fc7 layer in the AlexNet,
i.e., conv1→pool→norm→conv2→pool→norm→conv3→conv4→conv5→ fc-4096→drop→
fc-4096→drop→fc-256→CNN features.

• Data Structure Analyzer. It is implemented as the AlexNet with a 1000-dimensional output. It is initialized by the
weights pretrained on ImageNet and then finetuned on source data with the triplet loss, i.e., conv1→pool→norm→
conv2→pool→norm→conv3→conv4→conv5→fc-4096→drop→fc-4096→drop→fc-1000→
relu→Structure Scores→triplet loss.

• GCNs. We first need to construct densely-connected instance graph referring to the main body of the paper. The GCNs
architecture is as following, Instance Graph→ gcn(256,150)→ relu→ GCN features.

• Domain Classifier. we use the same architecture as the RevGrad [1], i.e., The concatenated CNN and GCN
features→fc-1024→drop→fc-1024→drop→fc-1→sigmoid→domain label→adversarial
loss.

Digits Recognition Network Architecture.

• CNNs. We use LeNet architecture, i.e., conv-20→pool→conv-50→pool→fc-500→fc-10→ CNN
features.

• Data Structure Analyzer. It is implemented as the LeNet. It is initialized by the weights pretrained on source data and
then finetuned on source data with the triplet loss, i.e., conv-20→pool→conv-50→pool→fc-500→fc-10→
relu→Structure Scores→triplet loss.

• GCNs. We first need to construct densely-connected instance graph referring to the main body of the paper. The GCNs
architecture is as following, Instance Graph→ gcn(10,3)→ relu→ GCN features.

• Domain Classifier. we use the same architecture as the ADDA [13], i.e., The concatenated CNN and GCN
features→fc-500→relu→fc-500→relu→fc-1→sigmoid→domain label→adversarial
loss.

In addition, the concatenated CNN and GCN features are applied to class alignment loss and final classifier implemented by
a fully-connected layer.

Parameters.

• Batch Size: 128

• Base Learning Rate: 0.01

• Moving Average Coefficient θ: 0.7

• Weight Balance Parameters λ, γ, η: The λ and γ are set as 2
1+exp(−k·p) , where the k is set to 10, and the p is changing

from 0 to 1 within the training process. η = 0.001.

• Triplet loss threshold αT : 1

• Domain Adversarial Loss Weight: 0.1

• Optimizer: The stochastic gradient decent with 0.9 momentum is used, and the learning rate is annealed by µp =
µ0

(1+α·p)β , where µ0 = 0.01, α = 10, and β = 0.75 [1]. As for digits recognition, a fixed learning rate 0.01 is used.



(1) AlexNet: A→W (2) RevGrad: A→W (3) GCAN: A→W (4) AlexNet: D →W (5) RevGrad: D →W (6) GCAN: D →W

(7) AlexNet: W → D (8) RevGrad: W → D (9) GCAN: W → D (10) AlexNet: A→ D (11) RevGrad: A→ D (12) GCAN: A→ D

(13) AlexNet: D → A (14) RevGrad: D → A (15) GCAN: D → A (16) AlexNet: W → A (17) RevGrad: W → A (18) GCAN: W → A

Figure 3. The learned representation visualization on Office-31 using the t-distributed stochastic neighbor embedding (t-SNE) [8]. Blue
points are source samples and red ones are target samples.

(1) AlexNet: I → P (2) RevGrad: I → P (3) GCAN: I → P (4) AlexNet: P → I (5) RevGrad: P → I (6) GCAN: P → I

(7) AlexNet: I → C (8) RevGrad: I → C (9) GCAN: I → C (10) AlexNet: C → I (11) RevGrad: C → I (12) GCAN: C → I

(13) AlexNet: C → P (14) RevGrad: C → P (15) GCAN: C → P (16) AlexNet: P → C (17) RevGrad: P → C (18) GCAN: P → C

Figure 4. The learned representation visualization on ImageCLEF-DA using the t-distributed stochastic neighbor embedding (t-SNE) [8].
Blue points are source samples and red ones are target samples.



(1) AlexNet:Ar → Cl (2) RevGrad:Ar → Cl (3) GCAN:Ar → Cl (4) AlexNet:Ar → Pr (5) RevGrad:Ar → Pr (6) GCAN:Ar → Pr

(7) AlexNet:Ar → Rw (8) RevGrad:Ar → Rw (9) GCAN:Ar → Rw (10) AlexNet:Cl → Ar (11) RevGrad:Cl → Ar (12) GCAN:Cl → Ar

(13) AlexNet:Cl → Pr (14) RevGrad:Cl → Pr (15) GCAN:Cl → Pr (16) AlexNet:Cl → Rw (17) RevGrad:Cl → Rw (18) GCAN:Cl → Rw

(19) AlexNet:Pr → Ar (20) RevGrad:Pr → Ar (21) GCAN:Pr → Ar (22) AlexNet:Pr → Cl (23) RevGrad:Pr → Cl (24) GCAN:Pr → Cl

(25) AlexNet:Pr → Rw (26) RevGrad:Pr → Rw (27) RevGrad:Pr → Rw (28) AlexNet:Rw → Ar (29) RevGrad:Rw → Ar (30) GCAN:Rw → Ar

(31) AlexNet:Rw → Cl (32) RevGrad:Rw → Cl (33) GCAN:Rw → Cl (34) AlexNet:Rw → Pr (35) RevGrad:Rw → Pr (36) GCAN:Rw → Pr

Figure 5. The learned representation visualization on Office-Home using the t-distributed stochastic neighbor embedding (t-SNE) [8]. Blue
points are source samples and red ones are target samples.
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