
Attentive Single-Tasking of Multiple Tasks
Appendix

The following additional information is provided in this
Appendix:

• Ablated results using different backbone architectures
for NYUD and FSV datasets in Section .

• Baselines using UberNet with and without the pro-
posed modulation and adversarial training in Section .

• Results using MobileNet as the backbone architecture,
in order to highlight potential mobile phone applica-
tions in Section .

• Technical details for training and testing in Section .
Code will also be published.

• Qualitative results in Fig. 2 and Fig. 3

Appendix A: More results on NYUD and FSV
Table 1 illustrates the quantitative results obtained by our

method on NYUD [11] and FSV [9], by changing the back-
bone architecture. Results are consistent among backbones,
and by including modulation and adversarial training to the
pipeline, we get improved results with respect to the multi-
task and single-task baselines, irrespective of the network
depth.

Appendix B: UberNet baseline
The architecture of [8] learns multiple tasks by using a

common backbone and a light-weight decoder (skip con-
nections and 1×1 convolutions) per task. We re-implement
the UberNet architecture, and we substitute the VGG [15]
backbone of the original work with the SE-ResNet [6] used
in our work. The main difference with our architecture are
the skip connections and 1 × 1 convolutions that comprise
each task-specific head, instead of the powerful Deeplab-
v3+ ASPP decoder [2] used throughout our work. Similarly
to our work, and similarly to the observation of the orig-
inal author, we observe a non-trivial drop in performance
when learning to multi-task with a common, entirely shared
backbone (Table 2). We plug-in SE and adversarial training
and we recover most of the drop. We provide results for all
3 datasets that have been used throughout this work. Re-
sults obtained by our architecture are presented in the last

backbone SEA #T Edge ↑ Seg ↑ Norm ↓ Depth ↓ ∆m% ↓
R-26 1 72.9 29.87 24.34 0.650 0
R-26 4 72.4 27.74 24.83 0.729 5.50
R-26 X 4 73.5 30.07 24.316 0.625 -1.36
R-50 1 74.4 32.82 23.3 0.610
R-50 4 73.2 30.95 23.34 0.700 5.44
R-50 X 4 74.5 32.16 23.18 0.570 -1.22
R-101 1 74.9 35.90 22.90 0.580
R-101 4 73.8 31.20 23.07 0.650 6.63
R-101 X 4 75.6 35.60 22.73 0.560 -1.07

(a) Our method on NYUD [11], for different backbones.

backbone SEA #T Seg ↑ Albedo ↓ Depth ↓ ∆m% ↓
R-26 1 69.77 0.087 0.065 0
R-26 3 66.71 0.090 0.073 6.41
R-26 X 3 71.36 0.085 0.065 -1.80
R-50 1 71.14 0.086 0.063 0
R-50 3 66.90 0.093 0.078 7.04
R-50 X 3 70.69 0.085 0.063 -0.02
R-101 1 72.10 0.086 0.063 0
R-101 3 68.12 0.091 0.072 8.75
R-101 X 3 72.24 0.083 0.062 -1.57

(b) Our method on FSV [9], for different backbones.

Table 1. Our method for NYUD, and FSV: Results with differ-
ent backbones: R-26, R-50, and R-101. Negative drop indicates
improved performance with respect to the single-tasking baseline.
Arrows indicate desired behaviour of each metric.

row of each table. The relatively lower performance espe-
cially for semantic tasks compared to our method is due to
the absence of a strong decoder. The observations regarding
modulation and adversarial training are, nevertheless, con-
sistent.

Appendix C: MobileNet-v2 backbone for mul-
tiple tasks

Our multi-tasking framework could find application in
light-weight CNNs designed for mobile phone applications.
For example, by using our framework, many different tasks
can be executed with only a single and small set of pa-
rameters being shipped to the end user. To test this idea,
we change our backbone to the light-weight MobileNet-
v2 [13], an architecture specifically designed for mobile
phones. We change the decoder accordingly: convolutions

1



backbone SEA #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑ ∆m% ↓
R-50-Uber 1 71.7 66.90 59.80 15.00 64.56
R-50-Uber 5 70.3 60.90 57.00 16.65 62.15 7.10
R-50-Uber X 5 70.5 65.50 60.15 14.94 64.98 0.43
R-50 X 5 72.4 68.00 61.10 14.80 65.70 n.a

(a) UberNet results in PASCAL.

backbone SEA #T Edge ↑ Seg ↑ Norm ↓ Depth ↓ ∆m% ↓
R-50-Uber 1 73.9 32.50 22.90 0.669 0
R-50-Uber 4 72.3 29.48 24.16 0.716 6.00
R-50-Uber X 4 73.7 31.19 23.46 0.632 0.30
R-50 X 4 74.5 32.20 23.20 0.570 n.a

(b) UberNet results in NYUD.

backbone SEA #T Seg ↑ Albedo ↓ Depth ↓ ∆m% ↓
R-50-Uber 1 70.26 0.092 0.101 0
R-50-Uber 3 67.02 0.093 0.124 9.50
R-50-Uber X 3 69.45 0.091 0.111 3.32
R-50 X 3 70.70 0.085 0.063 n.a

(c) UberNet results in FSV.

Table 2. UberNet for PASCAL, NYUD, and FSV: Standard
multi-task learning results in a significant drop in performance,
that is recovered with modulation and adversarial training. Last
rows of each table present results obtained by our architecture.

backbone enc dec #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑ ∆m% ↓
MNet 1 69.5 62.10 54.88 14.88 66.30 0
MNet 5 67.2 54.10 53.00 16.76 62.70 7.57
MNet X 5 67.5 57.40 54.50 16.55 63.00 5.47
MNet X X 5 69.2 61.60 55.17 15.21 65.60 0.97

Table 3. Results using MobileNet in PASCAL: Modulation with
SE is able to recover the performance that is lost using standard
multi-task learning.

are changed to depth-wise convolutions, and ReLU activa-
tions are changed to ReLU6. We pre-train a variant that
uses Squeeze and Excitation modules on ImageNet (SE-
MobileNet), and fine-tune for multi-task learning. We test
standard multi-tasking against the variants of our method
that use SE modulation. Table 3 summarizes our findings.
Similarly to the experiments using SE-ResNet, disentan-
gling the representations for each task also helps for Mo-
bileNet. By using SE per task both on the encoder and de-
coder, our method outperforms the single-tasking baseline.
Figure 1 puts these results in perspective, comparing them
to results obtained by SE-ResNet architecture. It is remark-
able that by using modulation, MobileNet is no worse than
the R-50 standard multi-tasking baseline using much less
computational cost, and only 8% of its parameters.

Appendix D: Implementation Details

In this section we provide the technical details for our
implementation.

Generic hyper-parameters: The entire hyper-
parameter search was performed on the single-task

baselines. For all tasks, we use synchronized SGD with
momentum of 0.9 and weight decay of 1e-4. We set the
initial learning rate to 0.005 and use the poly learning
rate [1]. All our models are trained on a single GPU with
batch size 8, and spatial input of 512 × 512. We used
multi-GPU training with batch size 16 and synchronous
batchnorm layers only for the sanity check experiments
(Table 2 of main paper), for a fair comparison with compet-
ing methods. Standard flipping, rotations, and scaling was
used for data augmentation. The number of total epochs is
set to 60 for PASCAL [5], 200 for NYUD [11], and 3 for
the large-scale FSV [9].

Weighting of the losses: Related work deals with au-
tomatically weighting of the losses for multi-task learn-
ing [3, 14]. We compared these methods to selecting the
optimal weights by grid-search. In our setup, we found out
that grid-search works better, probably because of the very
imbalanced optimal parameters (optimal weighting of loss
for edge detection is 50 times higher than semantic segmen-
tation, for example). In particular, we re-implemented [14]
that uses multi-objective optimization to re-weight the gra-
dients from each task, in order to optimize the shared parts
of the network towards a direction useful for all tasks. This
lead to better results than uniform weights, however we ob-
tained better results by simple grid-search.

For all our experiments, when training for multiple tasks,
we divide the learning rate of the shared layers by the num-
ber of tasks (T ), since T updates are happening for the same
mini-batch on the shared part of the network.

During training, we used the following formula for the
weights of the losses:

L = (1− wd) ·
T∑

t=1

wt · Lt + wd · Ld, (1)

where wt weights the loss Lt of task t, and wd the loss Ld

of the discriminator. All losses are averaged to the number
of samples that the prediction contains (W ×H ×C ×N ).

Edge Detection: For edge detection, we use wt = 50
and binary cross-entropy loss. As is common practice [16,
7, 10], the positive pixels are weighted more (0.95) than
the negative ones (0.05), to account for the class imbalance.
When training for a single task in BSDS (Table 2 of main
paper), where there are more than a single annotators, we
use the multi-instance learning (MIL) loss of [7]. No MIL
is used when training in PASCAL or NYUD. We follow the
common evaluation on those two datasets [10] by setting
the maximum allowed mis-localization of edges (maxDist
parameter) to 0.0075 and 0.011 for PASCAL and NYUD,
respectively.

Semantic Segmentation: For semantic segmentation,
we used wt = 1, and cross-entropy loss. When training
on VOC trainaug [2] (Table 2 of main paper), we did not
finetune separately on VOC val.



21 22 23 24 25 26 27 28

number of parameters (M)
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0
1

re
la

tiv
e 

dr
op

 (%
)

backbone
R-101
R-50
R-26
MNet

method
ST baseline
Adv SE RA
SE
SE Dec-only
Adv
MT baseline

21 22 23 24 25 26 27 28

number of multiply-adds (B)
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0
1

re
la

tiv
e 

dr
op

 (%
)

backbone
R-101
R-50
R-26
MNet

method
ST baseline
Adv SE RA
SE
SE Dec-only
Adv
MT baseline

Figure 1. Performance vs. Resources for MobileNet: Average relative drop as a function of the number of parameters (left), and multiply-
adds (right), for various points of operation of our method. Different backbones are indicated with different colors. MobileNet with our
modulation is able to reach R-50 results for standard multi-tasking, by using much less parameters and computation.

O
ur

s
B

as
el

in
e

O
ur

s
B

as
el

in
e

Figure 2. More qualitative Results in PASCAL: We compare our strongest model to results obtained by standard multi-tasking. The
baseline suffers from mixing features (eg. edge features appear in saliency results), whereas our method results in smoother results.

Human Part Segmentation: For human part segmenta-
tion, we used wt = 2. and cross-entropy loss. Samples that
do not contain any humans did not contribute to the loss.

Surface Normals: For surface normal estimation, we
used wt = 10 and L1 loss with unit-vector normalization.
During rotation augmentation, we carefully rotate the unit
vector of the surface normals accordingly, to point to a con-
sistent direction.

Albedo: For albedo, we use wt = 10, and standard L1

loss. We emphasize that our architecture is not optimal for
this task, since the output is 4 times smaller than the in-
put, and tiny details are not captured. Using an architecture
suited for albedo is out of the scope of this work.

Monocular Depth: For monocular depth estimation we
use wt = 1, and the loss of [4], which is a combination
of L1 loss and a smoothness term that enforces the spatial

gradients of the prediction to be consistent with the ones
of the ground truth. Our experiments showed that includ-
ing the smoothness term to the loss leads to better results,
quantitatively and qualitatively.

Discriminator: We use a fully-convolutional discrimi-
nator, which consists of two 1× 1 conv layers and a ReLU
activation. We did not observe improvements when using
discriminators of larger depth. We normalize the gradi-
ent of the losses of the tasks by their norm before passing
them through the discriminator. This practice makes train-
ing more stable because the norm of the gradients becomes
smaller as training progresses. We use wd = 0.1.

Further Technical Details: Our work is implemented
in PyTorch [12]. During weight update PyTorch applies
momentum and weight decay to all modules in the defini-
tion of a network. This behaviour is not desired When us-



O
ur

s
B

as
el

in
e

O
ur

s
B

as
el

in
e

O
ur

s
B

as
el

in
e

Figure 3. More qualitative Results in NYUD and FSV: We compare our strongest model to results obtained by standard multi-tasking in
NYUD (rows 1-4), and FSV (rows 5-6). In contrast to the baseline, our method does not suffer from degraded performance coming from
checkerboard effects in depth, blurry edges, or mixed semantic classes.

ing generic and task-specific weights, since the task-specific
ones are only used in the forward pass of the particular task,
which leads to T − 1 unwanted updates. This behaviour is
avoided by tracing the graph of computation and updating
only the weights that were used, which also translated into
quantitative improvements.

References
[1] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully con-
nected CRFs. T-PAMI, 2017. 2

[2] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.
Encoder-decoder with atrous separable convolution for se-
mantic image segmentation. In ECCV, 2018. 1, 2

[3] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich.
Gradnorm: Gradient normalization for adaptive loss balanc-
ing in deep multitask networks. arXiv:1711.02257, 2018. 2

[4] D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. In ICCV, 2015. 3

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Chal-
lenge 2012 (VOC2012) Results. 2

[6] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-
works. In CVPR, 2018. 1

[7] I. Kokkinos. Pushing the boundaries of boundary detection
using deep learning. In ICLR, 2016. 2

[8] I. Kokkinos. UberNet: Training a universal convolutional
neural network for low-, mid-, and high-level vision using
diverse datasets and limited memory. In CVPR, 2017. 1

[9] P. Krähenbühl. Free supervision from video games. In
CVPR, 2018. 1, 2

[10] K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. V. Gool. Con-
volutional oriented boundaries: From image segmentation to
high-level tasks. T-PAMI, 40(4):819 – 833, 2018. 2



[11] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor
segmentation and support inference from RGBD images. In
ECCV, 2012. 1, 2

[12] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. In NIPS-W, 2017. 3

[13] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen. Mobilenetv2: Inverted residuals and linear bottle-
necks. In CVPR, 2018. 1

[14] O. Sener and V. Koltun. Multi-task learning as multi-
objective optimization. In NIPS, 2018. 2

[15] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.
1

[16] S. Xie and Z. Tu. Holistically-nested edge detection. IJCV,
pages 1–16, 2017. 2


