Attentive Single-Tasking of Multiple Tasks
Appendix

The following additional information is provided in this
Appendix:

e Ablated results using different backbone architectures
for NYUD and FSV datasets in Section .

e Baselines using UberNet with and without the pro-
posed modulation and adversarial training in Section .

e Results using MobileNet as the backbone architecture,
in order to highlight potential mobile phone applica-
tions in Section .

e Technical details for training and testing in Section .
Code will also be published.

Qualitative results in Fig. 2 and Fig. 3

Appendix A: More results on NYUD and FSV

Table 1 illustrates the quantitative results obtained by our
method on NYUD [11] and FSV [9], by changing the back-
bone architecture. Results are consistent among backbones,
and by including modulation and adversarial training to the
pipeline, we get improved results with respect to the multi-
task and single-task baselines, irrespective of the network
depth.

Appendix B: UberNet baseline

The architecture of [8] learns multiple tasks by using a
common backbone and a light-weight decoder (skip con-
nections and 1 x 1 convolutions) per task. We re-implement
the UberNet architecture, and we substitute the VGG [15]
backbone of the original work with the SE-ResNet [6] used
in our work. The main difference with our architecture are
the skip connections and 1 x 1 convolutions that comprise
each task-specific head, instead of the powerful Deeplab-
v3+ ASPP decoder [2] used throughout our work. Similarly
to our work, and similarly to the observation of the orig-
inal author, we observe a non-trivial drop in performance
when learning to multi-task with a common, entirely shared
backbone (Table 2). We plug-in SE and adversarial training
and we recover most of the drop. We provide results for all
3 datasets that have been used throughout this work. Re-
sults obtained by our architecture are presented in the last

backbone SEA #T|Edge! Seg? Norm| Depthl| |A;,% |
R-26 1| 729 2987 2434 0.650 0
R-26 41 724 2774 2483 0.729 5.50
R-26 v 4| 735 3007 24316 0.625 -1.36
R-50 1| 744 3282 233 0.610

R-50 41 732 3095 2334 0.700 5.44
R-50 v 4| 745 3216 2318 0570 -1.22
R-101 1| 749 3590 2290 0.580

R-101 41 73.8 3120 23.07 0.650 6.63
R-101 v 4] 756 3560 2273 0.560 -1.07

(a) Our method on NYUD [11], for different backbones.

backbone SEA #T| Seg? Albedo| Depth | |An% |
R-26 1|69.77 0.087 0.065 0
R-26 316671 0.090 0.073 6.41
R-26 v 37136 0.085 0.065 -1.80
R-50 1|71.14 0.086 0.063 0
R-50 316690 0.093 0.078 7.04
R-50 v 37069 0.085 0.063 -0.02
R-101 17210 0.086 0.063 0
R-101 3 168.12 0.091 0.072 8.75
R-101 v 37224 0.083 0.062 -1.57

(b) Our method on FSV [9], for different backbones.
Table 1. Our method for NYUD, and FSV: Results with differ-
ent backbones: R-26, R-50, and R-101. Negative drop indicates
improved performance with respect to the single-tasking baseline.
Arrows indicate desired behaviour of each metric.

row of each table. The relatively lower performance espe-
cially for semantic tasks compared to our method is due to
the absence of a strong decoder. The observations regarding
modulation and adversarial training are, nevertheless, con-
sistent.

Appendix C: MobileNet-v2 backbone for mul-
tiple tasks

Our multi-tasking framework could find application in
light-weight CNNs designed for mobile phone applications.
For example, by using our framework, many different tasks
can be executed with only a single and small set of pa-
rameters being shipped to the end user. To test this idea,
we change our backbone to the light-weight MobileNet-
v2 [13], an architecture specifically designed for mobile
phones. We change the decoder accordingly: convolutions

backbone SEA #T|Edge? Seg? Parts? Norm| Sal? |A,% |
R-50-Uber 1| 717 6690 59.80 15.00 64.56
R-50-Uber 51 703 6090 57.00 16.65 62.15 7.10
R-50-Uber v 5| 705 6550 60.15 1494 6498 043
R-50 v 5| 724 68.00 61.10 14.80 65.70 n.a
(a) UberNet results in PASCAL.
backbone SEA #T |Edget Seg?® Norm| Depth | |A,,% |
R-50-Uber 1| 739 3250 2290 0.669 0
R-50-Uber 41 723 2948 24.16 0.716 6.00
R-50-Uber v 4 | 737 31.19 2346 0.632 0.30
R-50 v 4| 745 3220 2320 0.570 n.a
(b) UberNet results in NYUD.
backbone SEA #T| Seg? Albedo] Depth| |A,n% |
R-50-Uber 117026 0.092 0.101 0
R-50-Uber 3167.02 0.093 0.124 9.50
R-50-Uber v 3]6945 0.091 0.111 3.32
R-50 v 37070 0.085 0.063 n.a

(c) UberNet results in FSV.

Table 2. UberNet for PASCAL, NYUD, and FSV: Standard
multi-task learning results in a significant drop in performance,
that is recovered with modulation and adversarial training. Last
rows of each table present results obtained by our architecture.

backbone enc dec #T‘ Edget Seg? Partst Norm] Sal? ‘ A% |
MNet 1] 695 6210 54.88 14.88 66.30 0
MNet 51 672 5410 53.00 1676 62.70 7.57
MNet v 5| 675 5740 5450 1655 63.00 5.47

MNet v v 5] 692 6160 5517 1521 65.60 0.97

Table 3. Results using MobileNet in PASCAL: Modulation with
SE is able to recover the performance that is lost using standard
multi-task learning.

are changed to depth-wise convolutions, and ReLLU activa-
tions are changed to ReLU6. We pre-train a variant that
uses Squeeze and Excitation modules on ImageNet (SE-
MobileNet), and fine-tune for multi-task learning. We test
standard multi-tasking against the variants of our method
that use SE modulation. Table 3 summarizes our findings.
Similarly to the experiments using SE-ResNet, disentan-
gling the representations for each task also helps for Mo-
bileNet. By using SE per task both on the encoder and de-
coder, our method outperforms the single-tasking baseline.
Figure | puts these results in perspective, comparing them
to results obtained by SE-ResNet architecture. It is remark-
able that by using modulation, MobileNet is no worse than
the R-50 standard multi-tasking baseline using much less
computational cost, and only 8% of its parameters.

Appendix D: Implementation Details

In this section we provide the technical details for our
implementation.

Generic hyper-parameters: The entire hyper-
parameter search was performed on the single-task

baselines. For all tasks, we use synchronized SGD with
momentum of 0.9 and weight decay of le-4. We set the
initial learning rate to 0.005 and use the poly learning
rate [1]. All our models are trained on a single GPU with
batch size 8, and spatial input of 512 x 512. We used
multi-GPU training with batch size 16 and synchronous
batchnorm layers only for the sanity check experiments
(Table 2 of main paper), for a fair comparison with compet-
ing methods. Standard flipping, rotations, and scaling was
used for data augmentation. The number of total epochs is
set to 60 for PASCAL [5], 200 for NYUD [11], and 3 for
the large-scale FSV [9].

Weighting of the losses: Related work deals with au-
tomatically weighting of the losses for multi-task learn-
ing [3, 14]. We compared these methods to selecting the
optimal weights by grid-search. In our setup, we found out
that grid-search works better, probably because of the very
imbalanced optimal parameters (optimal weighting of loss
for edge detection is 50 times higher than semantic segmen-
tation, for example). In particular, we re-implemented [14]
that uses multi-objective optimization to re-weight the gra-
dients from each task, in order to optimize the shared parts
of the network towards a direction useful for all tasks. This
lead to better results than uniform weights, however we ob-
tained better results by simple grid-search.

For all our experiments, when training for multiple tasks,
we divide the learning rate of the shared layers by the num-
ber of tasks (1'), since 1" updates are happening for the same
mini-batch on the shared part of the network.

During training, we used the following formula for the
weights of the losses:

T
L=(1-wg)- Y wy L+ wg- La, (1)
t=1

where w; weights the loss L; of task ¢, and w, the loss Ly
of the discriminator. All losses are averaged to the number
of samples that the prediction contains (W x H x C x N).

Edge Detection: For edge detection, we use w; = 50
and binary cross-entropy loss. As is common practice [16,
7, 10], the positive pixels are weighted more (0.95) than
the negative ones (0.05), to account for the class imbalance.
When training for a single task in BSDS (Table 2 of main
paper), where there are more than a single annotators, we
use the multi-instance learning (MIL) loss of [7]. No MIL
is used when training in PASCAL or NYUD. We follow the
common evaluation on those two datasets [10] by setting
the maximum allowed mis-localization of edges (maxDist
parameter) to 0.0075 and 0.011 for PASCAL and NYUD,
respectively.

Semantic Segmentation: For semantic segmentation,
we used w; = 1, and cross-entropy loss. When training
on VOC trainaug [2] (Table 2 of main paper), we did not
finetune separately on VOC val.

01 backbone *
il — R-101
—3 — R-50 L]
-4 R-26
=51 — MNet
] <>method
—81 ¢ ST baseline
o Adv SE RA

—-101 A o SE

1 o SE Dec-only

relative drop (%)
4

A Adv
—-14 o MT baseline

20 22 23 2% 25 26 727 8
number of parameters (M)

01 backbone
)l — R-101
—3 — R-50
-4 R-26
=51 — MNet

G%ethod

relative drop (%)
4

—81 ¢ ST baseline
=91 o Adv SE RA
—-101 N o SE
-114 o SE Dec-only
—127 o) A Adv
-131 T
—-14 o MT baseline
-15

21 22 23 24 25 28 27 28
number of multiply-adds (B)

Figure 1. Performance vs. Resources for MobileNet: Average relative drop as a function of the number of parameters (left), and multiply-
adds (right), for various points of operation of our method. Different backbones are indicated with different colors. MobileNet with our
modulation is able to reach R-50 results for standard multi-tasking, by using much less parameters and computation.

Baseline

Figure 2. More qualitative Results in PASCAL: We compare our strongest model to results obtained by standard multi-tasking. The
baseline suffers from mixing features (eg. edge features appear in saliency results), whereas our method results in smoother results.

Human Part Segmentation: For human part segmenta-
tion, we used w; = 2. and cross-entropy loss. Samples that
do not contain any humans did not contribute to the loss.

Surface Normals: For surface normal estimation, we
used w; = 10 and £ loss with unit-vector normalization.
During rotation augmentation, we carefully rotate the unit
vector of the surface normals accordingly, to point to a con-
sistent direction.

Albedo: For albedo, we use w; = 10, and standard £
loss. We emphasize that our architecture is not optimal for
this task, since the output is 4 times smaller than the in-
put, and tiny details are not captured. Using an architecture
suited for albedo is out of the scope of this work.

Monocular Depth: For monocular depth estimation we
use w; = 1, and the loss of [4], which is a combination
of L1 loss and a smoothness term that enforces the spatial

gradients of the prediction to be consistent with the ones
of the ground truth. Our experiments showed that includ-
ing the smoothness term to the loss leads to better results,
quantitatively and qualitatively.

Discriminator: We use a fully-convolutional discrimi-
nator, which consists of two 1 x 1 conv layers and a ReLU
activation. We did not observe improvements when using
discriminators of larger depth. We normalize the gradi-
ent of the losses of the tasks by their norm before passing
them through the discriminator. This practice makes train-
ing more stable because the norm of the gradients becomes
smaller as training progresses. We use wg = 0.1.

Further Technical Details: Our work is implemented
in PyTorch [12]. During weight update PyTorch applies
momentum and weight decay to all modules in the defini-
tion of a network. This behaviour is not desired When us-

Baseline

Baseline

Baseline

Figure 3. More qualitative Results in NYUD and FSV: We compare our strongest model to results obtained by standard multi-tasking in
NYUD (rows 1-4), and FSV (rows 5-6). In contrast to the baseline, our method does not suffer from degraded performance coming from

checkerboard effects in depth, blurry edges, or mixed semantic classes.

ing generic and task-specific weights, since the task-specific
ones are only used in the forward pass of the particular task,
which leads to T' — 1 unwanted updates. This behaviour is
avoided by tracing the graph of computation and updating
only the weights that were used, which also translated into
quantitative improvements.

References

(1]

(2]

(3]

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully con-
nected CRFs. T-PAMI, 2017. 2

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.
Encoder-decoder with atrous separable convolution for se-
mantic image segmentation. In ECCV, 2018. 1, 2

Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich.
Gradnorm: Gradient normalization for adaptive loss balanc-
ing in deep multitask networks. arXiv:1711.02257,2018. 2

(4]

(5]

(6]

(7]

(8]

(9]

(10]

D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. In ICCV, 2015. 3

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Chal-
lenge 2012 (VOC2012) Results. 2

J. Hu, L. Shen, and G. Sun.
works. In CVPR, 2018. 1

I. Kokkinos. Pushing the boundaries of boundary detection
using deep learning. In ICLR, 2016. 2

I. Kokkinos. UberNet: Training a universal convolutional
neural network for low-, mid-, and high-level vision using
diverse datasets and limited memory. In CVPR, 2017. 1

P. Krihenbiihl.
CVPR,2018. 1,2
K. Maninis, J. Pont-Tuset, P. Arbeldez, and L. V. Gool. Con-

volutional oriented boundaries: From image segmentation to
high-level tasks. 7-PAMI, 40(4):819 — 833, 2018. 2

Squeeze-and-excitation net-

Free supervision from video games. In

[11]

[12]

[13]

(14]

[15]

[16]

P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor
segmentation and support inference from RGBD images. In
ECCV,2012. 1,2

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. In NIPS-W, 2017. 3

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen. Mobilenetv2: Inverted residuals and linear bottle-
necks. In CVPR, 2018. 1

O. Sener and V. Koltun. Multi-task learning as multi-
objective optimization. In NIPS, 2018. 2

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.
1

S. Xie and Z. Tu. Holistically-nested edge detection. IJCV,
pages 1-16, 2017. 2

