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1. Overview
In this supplementary material, we first present the implementation details of applying the proposed mode seeking regu-

larization scheme on different baseline models. Second, we detail the procedure for using different quantitative evaluation
metrics on various tasks. Third, we conduct an ablation study to analyze the impact of the proposed regularization term Lms

by varying the corresponding weight λms for the training, and provide some results on the design choice of the distance
metric. Then, the computational overheads are calculated to validate the efficiency of the proposed method. Finally, we
demonstrate additional qualitative results to complement the paper.

2. Implementation Details
Table 1 summarizes the datasets and baseline models used on various tasks. For all of the baseline methods, we incorporate

the original objective functions with the proposed regularization term. Note that we remain the original network architecture
design and use the default setting of hyper-parameters for the training.

DCGAN. Since the images in the CIFAR-10 [4] dataset are of size 32 × 32, we modify the structure of the generator and
discriminator in DCGAN [6], as shown in Table 2. We use the batch size of 32, learning rate of 0.0002 and Adam [3]
optimizer with β1 = 0.5 and β2 = 0.999 to train both the baseline and MSGAN network.

Pix2Pix. We adopt the generator and discriminator in BicycleGAN [12] to build the Pix2Pix [2] model. Same as Bicycle-
GAN, we use a U-Net network [8] for the generator, and inject the latent codes z into every layer of the generator. The
architecture of the discriminator is a two-scale PatchGAN network [2]. For the training, both Pix2Pix and MSGAN frame-
work use the same hyper-parameters as the officially released version 1.

DRIT. DRIT [5] involves two stages of image-to-image translations in the training process. We only apply the mode seeking
regularization term to generators in the first stage, which is modified on the officially released code 2.

StackGAN++. StackGAN++ [11] is a tree-like structure with multiple generators and discriminators. We use the output
images from the last generator and input latent codes to calculate the mode seeking regularization term. The implementation
is based on the officially released code 3.

3. Evaluation Details
We employ the official implementation of FID 4, NDB and JSD 5, and LPIPS 6. For NDB and JSD, we use the K-means

method on training samples to obtain the clusters. Then the generated samples are assigned to the nearest cluster to compute
the bin proportions. As suggested by the author of [7], there are at least 10 training samples for each cluster. Therefore, we
cluster the number of bins K ≈ Ntrain/20 in all tasks, where Ntrain denotes the number of training samples for computing
the clusters. We have verified that the performance is consistent within a large range of K. For evaluation, we randomly
generate N images for a given conditional context on various tasks. We conduct five independent trials and report the mean
and standard derivation based on the result of each trial. More evaluation details of one trial are presented as follows.

1https://github.com/junyanz/BicycleGAN/
2https://github.com/HsinYingLee/DRIT
3https://github.com/hanzhanggit/StackGAN-v2
4https://github.com/bioinf-jku/TTUR
5https://github.com/eitanrich/gans-n-gmms
6https://github.com/richzhang/PerceptualSimilarity
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Conditioned on Class Label. We randomly generate N = 5000 images for each class label. We use all the training samples
and the generated samples to compute FID. For NDB and JSD, we employ the training samples in each class to calculate
K = 250 clusters.

Conditioned on Image. We randomly generateN = 50 images for each input image in the test set. For LPIPS, we randomly
select 50 pairs of the 50 images of each context in the test set to compute LPIPS and average all the values for this trial. Then,
we randomly choose 100 input images and their corresponding generated images to form 5000 generated samples. We use
the 5000 generated samples and all samples in training set to compute FID. For NDB and JSD, we employ all the training
samples for clustering and choose K = 20 bins for facades, and K = 50 bins for other datasets.

Conditioned on Text. We randomly select 200 sentences and generate N = 10 images for each sentence, which forms 2000
generated samples. Then, we randomly select Ntrain = 2000 samples for computing FID, and clustering them into K = 100
bins for NDB and JSD. For LPIPS, we randomly choose 10 pairs for each sentence and average the values of all the pairs for
this trial.

4. Ablation Study on the Regularization Term
4.1. The Weighting Parameter λms

To analyze the influence of the regularization term, we conduct an ablation study by varying the weighting parameter
λms on image-to-image translation task using the facades dataset. Figure 1 presents the qualitative and quantitative results.
It can be observed that increasing λms improves both the quality and diversity of the generated images. Nevertheless, as
the weighting parameter λms becomes larger than a threshold value (1.0), the training becomes unstable, which yields low
quality, and even low diversity synthesized images. As a result, we empirically set the weighting parameter λms = 1.0 for all
experiments.

4.2. The Design Choice of the Distance Metric

We have explored other design choice of the distance metric. We conduct experiments using discriminator feature distance
in our regularization term in a way similar to feature matching loss [10],

Lms =
1
L

∑L
l=1 ‖Dl(G(c, z2))−Dl(G(c, z1))‖1

‖z2 − z1‖1
, (1)

where Dl denotes the lth layer of the discriminator. We apply it to Pix2Pix on the facades dataset. Table. 3 shows that
MSGAN using feature distance also obtains improvement over Pix2Pix. However, MSGAN using L1 distance has higher
diversity. Therefore, we employ MSGAN using L1 distance for all experiments.

5. Computational Overheads
We compare MSGAN with Pix2Pix, BicycleGAN in terms of training time, memory consumption, and model parameters

on an NVIDIA TITAN X GPU. Table. 4 shows that our method incurs marginal overheads. However, BicycleGAN requires
longer time per iteration and larger memory with an additional encoder and another discriminator network.

6. Additional Results
We present more results of categorical generation, image-to-image translation, and text-to-image synthesis in Figure 3,

Figure 4, Figure 5, Figure 6, Figure 7, and Figure 8, respectively.
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Table 1: Statistics of different generation tasks. We summarize the number of training and testing images in each generation
task. The baseline model used for each task is also provided.

Context Class Label Paired Images Unpaired Images Text

Dataset CIFAR-10 [4] Facades [1] Maps [2] Yosemite [12] Cat 
 Dog [5] CUB-200-2011 [9]
Summer Winter Cat Dog

train test train test train test train test train test train test train test train test

Samples 50, 000 10, 000 400 206 1, 096 1, 098 1, 069 309 770 238 771 100 1, 264 100 8, 855 2, 933

Baseline DCGAN [6] Pix2Pix [2] DRIT [5] StackGAN++ [11]

Table 2: The architecture of the generator and discriminator of DCGAN. We employ the following abbreviation: N=
Number of filters, K= Kernel size, S= Stride size, P= Padding size. “Conv”, “Dconv”,“BN” denote the convolutional layer,
transposed convolutional layer and batch normalization, respectively.

Layer Generator Discriminator

1 Dconv(N512-K4-S1-P0), BN, Relu Conv(N128-K4-S2-P1), Leaky-Relu
2 Dconv(N256-K4-S2-P1), BN, Relu Conv(N256-K4-S2-P1), BN, Leaky-Relu
3 Dconv(N128-K4-S2-P1), BN, Relu Conv(N512-K4-S2-P1), BN, Leaky-Relu
4 Dconv(N3-K4-S2-P1), Tanh Conv(N1-K4-S1-P0), Sigmoid

Table 3: Quantitative results on the facades dataset.

Pix2Pix [2] MSGAN-L1 MSGAN-FD

FID ↓ 139.19± 2.94 92.84± 1.00 100.16± 3.14
NDB↓ 14.40± 1.82 12.40± 0.55 11.80± 1.48
JSD↓ 0.074± 0.012 0.038± 0.004 0.072± 0.014

LPIPS↑ 0.0003± 0.0000 0.1894± 0.0011 0.0565± 0.0003

Table 4: Comparisons of computational overheads on the facades dataset.

Model Time (s) Memory (MB) Parameters (M)

Pix2Pix [2] 0.122 1738 58.254
MSGAN 0.122 1739 58.254

BicycleGAN [13] 0.192 2083 64.303
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Figure 1: Ablation study on the impact of λms. We show the (a) qualitative and (b) quantitative (FID and LPIPS) results.
The study is conducted on image-to-image translation task with the facades dataset.
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Figure 2: More categorical generation results of CIFAR-10. We show the results of DCGAN [6] with the proposed mode
seeking regularization term on categorical generation task.
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Figure 3: More image-to-image translation results of facades and maps. Top three rows: facades, bottom three rows:
maps.
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Input Generated images

Figure 4: More image-to-image translation results of Yosemite, Summer→Winter.
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Input Generated images

Figure 5: More image-to-image translation results of Yosemite, Winter→Summer.
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Input Generated images

Figure 6: More image-to-image translation results of Cat→Dog.
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Figure 7: More image-to-image translation results of Dog→Cat.
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Figure 8: More text-to-image synthesis results of CUB-200-2011.
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