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Abstract

Here we report on the supplementary materials for the
paper “Cross-Classification Clustering: An Efficient Multi-
Object Tracking Technique for 3-D Instance Segmentation
in Connectomics”.

1. supplementary

We begin with a brief overview and then report on the
following: 1.2. Neural Network Details 1.3. Agglomer-
ation 1.4. Comparison with Baselines 1.5. Performance
of 3C on S1 1.6. Video Results.

1.1. Overview

Our paper presents a method for transferring instance
segmentation from one image space to another using super-
vised learning (Instance Segmentation Transfer; IST). The
IST method was utilized to generate 3-D instance segmen-
tation of image stacks. This was achieved by firstly satu-
rating the entire image space with 2-D seeds and then treat-
ing seed information as 2-D instance segmentation, and fi-
nally propagating seeds across images. We termed our IST
solution Cross-Classification Clustering (3C) since it uses
traditional classifications and supervised learning to cluster
the space into an a priori unknown number of labels. We
demonstrated our approach to 3-D instance segmentation on
the difficult case of neural reconstruction in connectomcis, a
problem which requires swift and highly accurate inference.

1.2. Neural Network Details

Three types of network architecture were studied: 1) 3C-
Maxout, a light Maxout network [5] used for the large-scale
experiment with the S1 dataset [3]. It has 6 output classes
(1-4 3C colors, border prediction, new-object-prediction),
and a FoV=109×109. The input has 16 feature maps,
encoding the l colors as equilaly space fractions between
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0 and 1. We used l = 4. Each module includes a cas-
cade of 64 4x4 convolutions, 2x2 maxpool and a maxout, as
shown in Table 1. 2) An even lighter 3C-Maxout network
was used for the PNS dataset. It has 5 outpus classes (1-4
colors, not-axon), and FoV=53×53, the input has 16 fea-
ture maps. The same structure is used as in 1), with half the
features and a shallower network, as shown in Table 2. 3)
A module combination of convLSTM and UNET which we
called 3C-LSTM-UNET. It has 4 classes (1-4 colors), and
FoV=512×512. Here we only report on the different types
of layers included in this architecture, as shown in Table 4.

Our implementation of 3C-LSTM-UNET for the
SNEMI3D dataset used Keras with Tensorflow backend.
We ran all experiments on a server with a single Tesla
V100-PCIE GPU. We trained our model by minimizing
binary-entropy through back-propagation, using Adam with
a learning rate of 10−4. Our implementation of 3C-Maxout
for the PNS and S1 experiment used SGD solver in Caffe
[2] with a learning rate of 7 · 10−3.

We further compared the accuracy and number of pa-
rameters of 3C-LSTM-UNET with other commonly used
network structures, such as UNET and Residual UNET, re-
sults are shown in Table 3.

1.3. Agglomeration

Our agglomeration step merges a 2-D seed with a seed
propagated by the 3C algorithm, if the two segments overlap
for at least 1/10 of the area of the originally placed seed. Af-
ter the agglomeration step is terminated, some objects with
biologically implausible properties, such as a small volume,
improbable object flatness or impossible topology may oc-
cur. The problem of error detection in connectomics is not
widely studied and is poorly understood, although recently
several works suggested data-driven approaches to the prob-
lem, for example learning and detecting the morphology of
implausible objects [11, 12]. Others applied a model-based
approach for example for detecting biologically an implau-
sible object topology of an X-junction [7] or by learning
local and non-local biological constraints [4].

Orphans are objects that reside within the dataset but are
either very small or do not reach the boundaries of the vol-
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Type Number Kernel
/layers of kernels size/Stride
conv1 128 4×4/1

maxpool - 2×2/2
maxout 2:1 - -

conv2 128 4×4/1
maxpool - 2×2/2

maxout 2:1 - -
conv3 128 4×4/1

maxpoo - 2×2/2
maxout 2:1 - -

conv4 128 4×4/1
maxpool - 2×2/2

maxout 2:1 - -
conv5 6 4×4/1

Table 1. Different types of layers with its corresponding parame-
ters, number of kernels, and kernel size for the 3C-MaxOut archi-
tecture used for the S1 dataset.

Type Number Kernel
/layers of kernels size/Stride
conv1 64 4×4/1

maxpool - 2×2/2
maxout 2:1 - -

conv2 64 4×4/1
maxpool - 2×2/2

maxout 2:1 - -
conv3 64 4×4/1

maxpool - 2×2/2
maxout 2:1 - -

conv4 5 4×4/1

Table 2. Different types of layers with its corresponding parame-
ters, number of kernels, and kernel size for the 3C-MaxOut archi-
tecture used for the PNS dataset.

Network Structure Number of Training/Validation
Parameters Accuracy

3C-LSTM-UNET 4M 0.963/0.961
3C-UNET-LSTM 4M 0.861/0.864

3C-UNET 31M 0.881/0.880
3C-Residual UNET 17M 0.915/0.863

Table 3. Comparison of 3C-LSTM-UNET, 3C-UNET-LSTM,3C-
UNET, 3C-Residual UNET on SNEMI3D data for number of pa-
rameters, training accuracy and validation accuracy.

ume. For teravoxel mammalian-cortex connectomics, all fi-
nal objects (neuronal compartments) must be large enough
to reach the datasets boundary. Thus, all orphans are in-
correct split objects which if possible needs to be merged
to other split or orphan objects. In this paper we used a
simple heuristic to avoid the existence of any orphan in the

Module Type Number Kernel
/Layer of kernels size/Stride

ConvLSTM convLSTM 20 3× 3/1
BN - -

conv1 32 3×3/1
conv2 64 3×3/1
conv3 128 3×3/1
conv4 256 3×3/1

UNET conv5 512 3×3/1
conv6 1 1×1/1

BN - -
maxpool - 2×2/2
upsample - 2×2/1

Table 4. Different types of layers with its corresponding parame-
ters, number of kernels and kernel size occur in module ConvL-
STM and UNET for construction of 3C-LSTM-UNET architec-
ture.

dataset. We marked all orphans and then iteratively merged
the strongest edge between an orphan and a non-orphan ob-
ject, where weighted edges are defined by the 3C algorithm.
In the end, if the dataset still contained orphans, we itera-
tively connected the closest pair of an orphan and a non-
orphan objects, by measuring distance on the affinity graph
with the weighted edges defined by the border probability
map.

1.4. Comparison with Baselines

Here we supplement the comparison from the main text
for the SNEMI3D experiment. We provide additional 2-D
results for sections Z=5, 25, 45, 65, 85, generated from the
3C-LSTM-UNET network, with the same ground truth and
the two baselines reported in the main text, Neuroproof [8,
9, 10] and Watershed [5]. The results are shown in Figure 1.
Each segmented image is provided with the corresponding
value of Variation of Information (VI) [6].

1.5. Performance of 3C on S1 [3]

We implemented a light-weight version of 3C in order to
swiftly reconstruct the large scale S1 dataset [3] (described
in Neural Network Details) (implemented in C and Cilk
with XNN backend [5]). This system generates borders
on-the-fly and computes and updates seeds by the 3-D con-
nected components of low border probability regions. Then
3C is used to propagate and correct seed information with-
out any post-processing or agglomeration steps. The results
of this experiment are shown in the main text as well as in
the next section. Here we report on the performance on a
single multi-core machine.

In this experiment, we executed on the same Intel in-
frastructure reported by Matveev et al.’s multi-core swift
pipeline using their fast Cilk-Based, Cache-aware CPU im-



Figure 1. SNEMI3D: The 3C-LSTM-UNET Results compared with baseline techniques: Watershed, Neuroproof, and ground truth for
sections Z=5, 25, 45, 65, 85.

plementation [5]. Although this pipeline is no longer con-
sidered state of the art, we compared to it here because it
is the fastest reconstruction pipeline known to us (recon-
struction S1 on a single machine in about 8 hours). The S1
mouse somatosensory cortex dataset of Kasthuri et al. [3]

contains 1840 electron microscopy images sized 180GB
in total ( 90 gigavoxels of EM). The generation of a full
segmentation of the dataset by the 3C algorithm took 129
hours, of which 40 hours were spent on the algorithm logic
and I/O. The rest of the computation time (79 hours) was



spent on the CNN 4-socket CPU computation on an In-
tel (18x4)-core machine. Together with 8 hours of bor-
der generation, this amounts to a rate of 0.2MB/s. This is
only an order of magnitude slower than the blitz pipeline
of Matveev et al. [5] which processes 2.5MB of data per
second, while our pipeline is delivering improved accuracy,
both qualitatively, as seen in our video and images, and in
terms of local accuracy as demonstrated in the main text
in the Neuroproof test. These numbers indicate an order
of magnitude improvement compared with the MaskExtend
single-object reconstruction algorithm [7], aligned with the
simulations presented in the main text, carried out against
MaskExtend [7] and FFN [1].

1.6. Video Results

Finally, we provide here the list of videos illustrating the
results of the 3C technique in three different reconstruction
scenarios. These videos are given as supplementary mate-
rial and will accompany the publication:

1. A video surveying the benchmark SNEMI3D recon-
struction.

2. A video surveying the large-scale S1 reconstruction.
3. A video surveying the large-scale PNS reconstruction.

References
[1] Michał Januszewski, Jörgen Kornfeld, Peter H Li, Art Pope,

Tim Blakely, Larry Lindsey, Jeremy Maitin-Shepard, Mike
Tyka, Winfried Denk, and Viren Jain. High-precision auto-
mated reconstruction of neurons with flood-filling networks.
Nature methods, 15(8):605, 2018.

[2] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama,
and Trevor Darrell. Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[3] Narayanan Kasthuri, Kenneth Jeffrey Hayworth,
Daniel Raimund Berger, Richard Lee Schalek, José Angel
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