A. Practical Full Resolution Learned Lossless Image Compression — Appendix

Decoding Time Obtaining CDF Arithmetic

for Decoder [s] Decoding [s]

5=23,64 x 64 - 0.00179
s =2,128 x 128 0.00737 0.00759
s =1,256 x 256 0.0219 0.0234
5s=0,512 x 512 0.143 0.169
Total 0.172 0.202

Table Al: We show the time to obtain CDF, including all forward
passes through the different stages, as well as the time required by

the arithmetic decoder. We measured on a Titan X (Pascal), and

took the average over 500 crops of 512 x 512 pixels. For s = 3, we
assume a uniform prior, and thus do not need to calculate a CDE.

A.1. Encoding and Decoding Details

Table Al shows the time required to decode each scale s.

We first obtain the CDF as a matrix on the CPU to be able
to use the arithmetic decoder (see below), and then do a pass
with the arithmetic decoder. We did not optimize either part
for speed, as noted in Sec. A.1.2.

The following shows detailed steps, using again z(*) = z.

The steps are also visualized in Fig. A4.

Encoding

1.
2.

Forward pass through network to obtain Vs : z(*), f(5)

Encode z(5) assuming a uniform prior, i.e., assuming each
of the L symbols is equally likely. This requires log, (L)
bits per symbol.

. Update the means p predicted for the RGB scale (s = 0)

to 1, given the input z (see Eq. (7)).

. In practice, the division into intervals [a, b) required for

arithmetic coding described in Sec. 3.1 is most efficiently
done by having access to the cumulative distribution func-
tion (CDF) of the symbol to encode. Thus, for the RGB
scale (s = 0), we obtain the CDF analogously to Eq. (6):

C($1u1,|f(1)) = Zﬂ-lleuv Cl('rluv‘ﬂllcuv’afuv)
k

C($2uv|f(1), xluv) = Z 7T]2€uv Cl (xQUU‘ﬁgu'w Uguv)
k

C($3uv|f(1), xlulnxQUU) = Zﬂ—:’;uv Cl(m3uv‘ﬂ§uv’0§uv)'
k

12)

And, analogously to Eq. (9), the CDF for s > 0 for each
channel c is

CEELIFET) =Y "k, ik 0k, (13)
k

C; in Egs. (12), (13) is the CDF of the logistic distribution,
Ci(z|p, o) = sigmoid((z — p) /o).
For each s, ¢ the CDF C(2|f(+V) isa H' x W' x L-

dimensional matrix, where L = 257 for RGB and L = 26
otherwise, and H' = H/2°, W' = W/25.

. Foreach s € {S+1,...,0}, encode each channel c of z(*)

with the predicted C (ng)| fH+D), using adaptive arith-
metic coding (see Sec. 3.1). To be able to uniquely de-
code, the sub-bitstream for () always starts with a triplet
encoding its dimensions C, H', W’ as UINT16. The final
bitstream is the concatenation of all sub-bitstreams.

Decoding

1. Obtain the final 2(°) from the bitstream, which was en-

coded with a uniform prior.

2. Feed 2% to D) to obtain f(), and thereby also

C (zéﬁv_ 1)| f (S)) for all c. Since the decoder now has
access to the same CDF as the encoder, we can decode
25=1) from the bitstream with our adaptive arithmetic
decoder.

. Analogously, we repeat the previous step to obtain
29 2 as well as ... fU) using the ac-
companying CDFs.

. Given f (1), which contains all parameters for the RGB
scale (i.e., we know Yk, c,u,v: 7k, uk ok = as
well as Ak AE Ak see Sec. 3.4), we can obtain
the CDF for the first channel of x (21, red channel),
C(21]fM), and decode this first channel from the bit-
stream. Now we know 1, and with p5,, . * ~we can
obtain fi5 via Eq. (7). With this, we also know the CDF
of the next channel, C(x2|f(), 1), and can decode z
from the bitstream. In the same fashion, we can then

obtain fi%, then C(z3|f™"), 21, x5), and thus 3.

. Concatenating the channels x1, x2, x3, we finally obtain
the decoded image x.

A.1.1 Hardware Used

Our timings were obtained on a machine with a Titan X (Pas-
cal) GPU and Intel Xeon E5-2680 v3 CPU.

A.1.2 Notes on Code Optimization

The encoder can be run in parallel over all scales, as all CDFs
are known after one forward pass. Further, we do not need to
know the CDF for all symbols, but only for the symbols z
we encode and z + 1, since this specifies the interval [a, b).
The decoder is sequential in the scales since z(*) is required
to predict the distribution of z(*=1). Still, for s > 0, the
decoding of the channels of the z(*) could be parallelized, as
the channels are modelled fully independently. However, we
did not implement either of these improvements, keeping the
code simple.

For both encoder and decoder, the CDFs must be available
to the CPU, as the arithmetic coder runs there. However, the
CDFs are huge tensors for real-world images (H x W x 257
for RGB, which amounts to 257MB for each channel of a
512 x 512 image). To save the expensive copying from GPU
to CPU, we implemented our own CUDA kernel to store the
claculated C directly into “managed memory”, which can be
accessed from both CPU and GPU. However, we did not op-
timize this CUDA kernel for speed.

Finally, while state-of-the-art adaptive entropy coders typ-
ically require on the order of milliseconds per MB (see [13]
and in particular [14] for benchmarks on adaptive entropy
coding), we implemented a simple arithmetic coding mod-
ule to obtain the times in our tables. Please see the code' for
details.

A.2. Comparison on ImageNet64

We show a bpsp comparison on ImageNet64 in Table A2.
Similar to what we observed on ImageNet32 (see Sec-
tion 5.2), our outputs are 23.8% larger than MS-PixelCNN
and 19.4% larger than the original PixelCNN, but smaller
than all classical approaches. We note again that increase in
bitcost is traded against orders of magnitude in speed.

We also note that the gap between classical approaches
and PixelCNN becomes smaller compared to ImageNet32.

A.3. Note on Comparing Times for 32 x 32 Images

In Table 2, we report run times for batch size 30 to be able
to compare with the run times reported in [32]. However, this
comparison is biased against us, as can be seen in Table A3:
Since our network is fairly small, we can process up to 480
images of size 32x 32 in parallel. We observe that the time to
sample one image drops as the batch size increases, indicat-
ing that for BS=30, some overhead dominates.

Figure A1l: Heatmap visualization of the first three channels for each
of the representations 20 2 20) each containing values in L. =
{1,...,25}, as indicated by the scale underneath.

[bpsp] ImageNet64 Learned
L3C (ours) 4.42 v
PixelCNN [46] 3.57 v
MS-PixelCNN [32] 3.70 v
PNG 5.74

JPEG2000 5.07

WebP 4.64

FLIF 4.54

Table A2: Comparing bits per sub-pixel (bpsp) on
the 64 x 64 images from ImageNet64 of our method
(L3C) vs. Pixel CNN-based approaches and classical

approaches.
Batch Size Time per image [s]
30 6.24-1074
60 4.31-107*
120 3.16-1074
240 2.52-1074
480 2.42-1074

Table A3: Effect of varying the batch size.

A 4. Visualizing Representations

We visualize the representations z(1), 2(2) 2(3) in Fig. A1.
It can be seen that the global image structure is preserved
over scales, with representations corresponding to smaller s
modeling more detail. This shows potential for efficiently
performing image understanding tasks on partially decoded
images similarly as described in [43] for lossy learned com-
pression: instead of training a feature extractor for a given
task on z, one could directly use the features 2(8) from our
network.

Figure A2: Architecture for the RGB Shared baseline. Note that we
train only one predictor DW,

43
f(-’!]

Figure A3: Architecture for the RGB baseline. Multiple predictors
are trained.

A.5. Architectures of Baselines

Figs. A2, A3 show the architectures for the RGB Shared
and RGB baselines. The dots in Fig. A2 indicate that the
model could in theory be applied more since D) is used for
every scale.

A.6. Encoding and Decoding Visualized

We visualize the steps needed to encode the different z(%)
in Fig. A4 on the next page.

Encoding Decoding
bitstream bitstream

A

bitstream bitstream

bitstream bitstream

bitstream

plalf)

—

Figure A4: Visualizing encoding and decoding: At every step, the arithmetic coder (AC) takes a probability distribution and a 2,

